

Copyright © 2014 by Elenco[®] Electronics, Inc. All rights reserved. No part of this document shall be reproduced by any means; electronic, photocopying, or otherwise without written permission from the publisher.

Patents: 7,144,255; 7,273,377; & other patents

Outline

Page #	Title	Page #	Title
3	Parts List	17	Project 10: S-R NAND Latch
4-7	Introduction	18	Project 11: Gated S-R Latch
8	Project 1: NOT Gate (Inverter)	19-20	Project 12: J-K Latch
9	Project 2: AND Gate	21-22	Project 13: Gated D Latch
10	Project 3: OR Gate	23-24	Project 14: Comparator
11	Project 4: NAND Gate	25	Project 15: Half Adder
12	Project 5: NOR Gate	26	Project 16: Half Subtractor
13	Project 6: Exclusive OR (XOR) Gate	27-28	Project 17: Multiplexer
14	Project 7: De Morgan's Law Negation of Conjunction	29-33	Quiz
15	Project 8: De Morgan's Law Negation of Disjunction	34-41	Quiz Answers
16	Project 9: S-R NOR Latch		

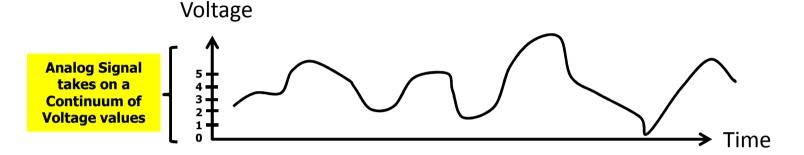
Warning: Shock Hazard – Never connect Snap Circuits[®] to the electrical outlets in your home in any way!

Warning: Choking Hazard – Small parts. Not for children under 3 years.

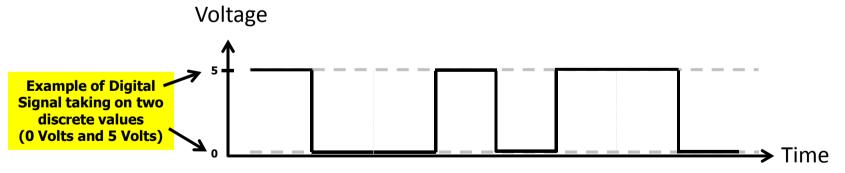
Warning: Always check your wiring before turning on a circuit. Never leave a circuit unattended while the batteries are installed. Never connect additional batteries or other power sources to your circuits. Discard any cracked or broken parts.

Batteries:

- Use only 1.5V AA type, alkaline batteries.
- Insert batteries with correct polarity.
- Do not mix old and new batteries.
- Remove batteries when they are used up.
- Do not short circuit the battery terminals.
- Non-rechargeable batteries should not be recharged.
 Rechargeable batteries should only be charged under adult
- supervision, and should not be recharged while in the product.Do not mix alkaline, standard (carbon-zinc), or rechargeable
- Do not mix alkaline, standard (carbon-zinc), or rechargeable (nickel-cadmium) batteries.
- Do not connect batteries or battery holder in parallel.


- Never throw batteries in a fire or attempt to open its outer casing.
- Batteries are harmful if swallowed, so keep away from small children.

Parts List


ID	Part Name	Part Number	QTY
1	1-snap wire	6SC01	7
2	2-snap wire	6SC02	10
3	3-snap wire	6SC03	5
4	4-snap wire	6SC04	1
5	5-snap wire	6SC05	2
6	6-snap wire	6SC06	1
7	7-snap wire	6SC07	2
B1	Battery Holder 4.5V (3-AA)	6SCB3	1
	Base Grid (11.0" x 7.7")	6SCBG	1
D1	LED red	6SCD1	1
D2	LED green	6SCD2	1
	Jumper wire black	6SCJ1	1
	Jumper wire red	6SCJ2	1
	Jumper wire orange	6SCJ3A	1
	Jumper wire green	6SCJ3C	3
	Jumper wire gray	6SCJ3E	5
R2	1k Ω Resistor	6SCR2	2
S1	Slide switch	6SCS1	1
U15	NOT Gate	6SCU15	3
U16	AND Gate	6SCU16	2
U17	OR Gate	6SCU17	1
U18	NAND Gate	6SCU18	2
U19	NOR Gate	6SCU19	2
U20	XOR Gate	6SCU20	1

Introduction Analog vs. Digital Waveforms

Analog Waveform – can take on any voltage value

Digital Waveform – takes on discrete voltage values

Analog signals can take on a continuum of values while digital signals take on only discrete values.

Introduction Digital Signals

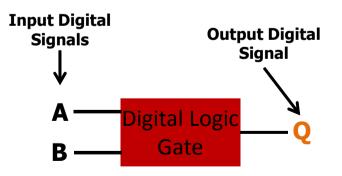
- Digital waveforms can be used to represent digital signals (e.g. 0 or 1, true or false), for example
 - 0 (false) represented by 0 Volts
 - 1 (true) represented by a small voltage, e.g. 3 Volts
- Example of Digital Waveform representing digital signals

 True
 False
 True
 False
 True
 False
 True
 False
 False</

Digital signals are represented by a "high" state (1) or "true" state consisting of a small voltage (e.g. 3V) and "low" state (0) or "false" state consisting of 0 Volts.

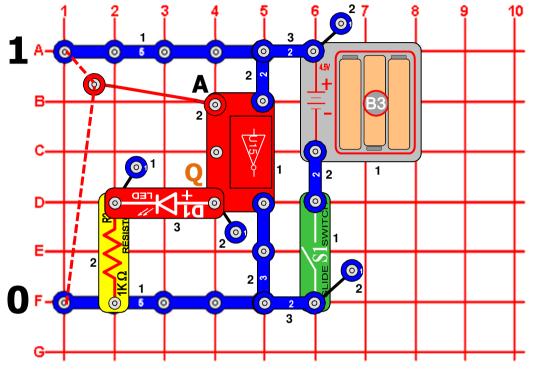
Introduction Logic Problem Statements

- Logic problems have outcomes (or outputs) that depend on events (or inputs).
- For example
 - The cuckoo clock makes noise if the batteries are not dead AND it's the top of the hour.
 - In this example, the output is "the cuckoo clock making noise" and the inputs are "the batteries are not dead" and "it's the top of the hour".



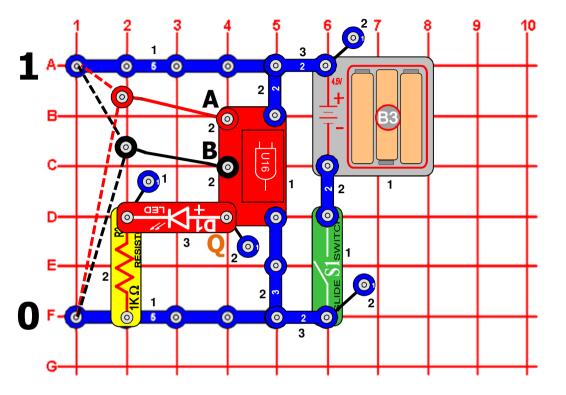
- Note that in this example, the output is true (cuckoo clock makes noise) if and only if both inputs are true (batteries are not dead AND it's the top of the hour).
- You will see that this decision box can be represented by digital logic using an AND gate, with the inputs and output being represented by digital signals.

Introduction Logic Gates


- A digital logic gate is an Integrated Circuit (IC) device that makes logical decisions based on various combinations of digital signals presented to it's inputs.
- Digital logic gates can have more than one input signal, but generally have a single output signal, just like the decision box on the previous slide.
- In the following projects, the input digital signals will be represented by A and/or B and the output digital signal will be represented by Q.
- The next six projects will demonstrate how the output digital signal is determined by the input digital signals for various different digital logic gates (NOT gate, AND gate, OR gate, NAND gate, NOR gate, XOR gate).
- The remaining projects will demonstrate the input/output characteristics of some common combinations of digital logic gates, called digital logic circuits.

Almost all modern electronics such as computers and cellphones use digital logic circuitry.

Project 1: NOT Gate (Inverter)


This circuit demonstrates how the NOT Gate (U15) works. Turn the slide switch (S1) on. Connect the loose end of the red wire to either low voltage (denoted as a "0") or high voltage (denoted as "1"). If input A is low (0), then the Q output will be high (1), and the red LED (D1) will be on. If input A is high (1), then the Q output will be low (0) and the red LED will be off.

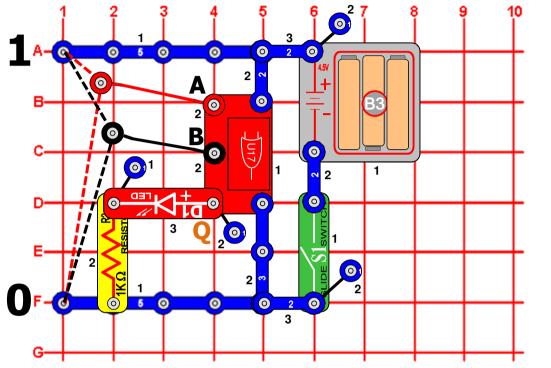
The inversion of a state is often represented with a bar over the variable, so $\mathbf{Q} = \mathbf{\overline{A}}$.

Input (A)	Output (Q)
0	1
1	0

NOT gates are used in digital logic circuits to "invert a voltage level". A high voltage level (1) into the NOT gate becomes a low voltage level (0) at the output and vice versa.

Project 2: AND Gate

This circuit demonstrates how the AND Gate (U16) works. Turn the slide switch (S1) on. Connect the loose ends of the red and black wires to either low voltage (denoted as a "0") or high voltage (denoted as a "1"). If, and only if, both input A AND input B are high (both 1s), then the Q output will be high (1), and the red LED (D1) will be on.



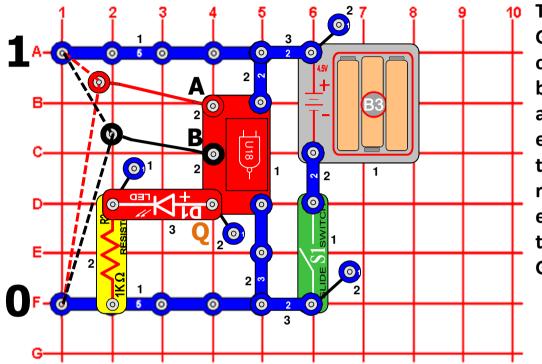
The output of an AND gate is often represented as the product of the inputs, so $\mathbf{Q} = \mathbf{AB}$.

Input (A)	Input (B)	Output (Q)
0	0	0
0	1	0
1	0	0
1	1	1

AND gates are used in digital logic circuits to perform a logical multiply. When one of the inputs is low (0), the output is low (i.e. multiply by 0). The output will only be high (1) when both inputs are high.

Project 3: OR Gate

This circuit demonstrates how the OR Gate (U17) works. Turn the slide switch (S1) on. Connect the loose ends of the red and black wires to either low voltage (denoted as a "0") or high voltage (denoted as a "1"). If either input A OR input B are high (1), then the Q output will be high (1), and the red LED (D1) will be on.

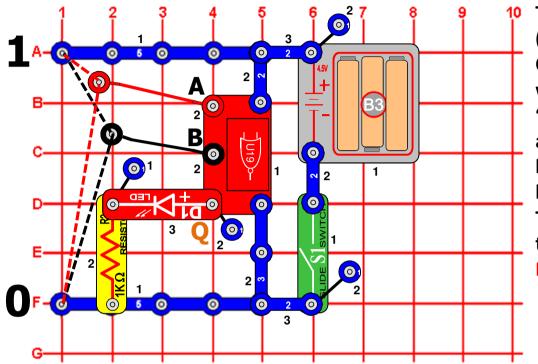


The output of an OR gate is often represented as the sum of the inputs, so $\mathbf{Q} = \mathbf{A} + \mathbf{B}$.

Input (A)	Input (B)	Output (Q)
0	0	0
0	1	1
1	0	1
1	1	1

OR gates are used in digital logic circuits to perform a logical add. When one of the inputs is high (1), the output is high. The output will only be low (0) when both inputs are low.

Project 4: NAND Gate

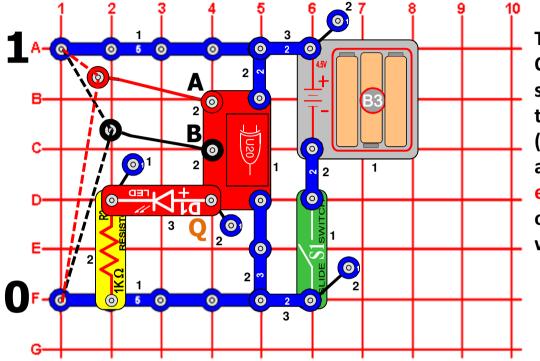


This circuit demonstrates how the NAND Gate (U18) works. Turn the slide switch (S1) on. Connect the loose ends of the red and black wires to either low voltage (denoted as a "0") or high voltage (denoted as a "1"). If either input A OR input B are low (0), then the Q output on U18 will be high (1), and the red LED (D1) will be on. The output logic is exactly the opposite of the AND gate, hence this gate is called the NOT AND or NAND Gate.

Input (A)	Input (B)	Output (Q)
0	0	1
0	1	1
1	0	1
1	1	0

NAND gates are used in digital logic circuits to perform an inverted logical multiply. When one of the inputs is low (0), the output is high. The output will only be low (0) when both inputs are high.

Project 5: NOR Gate

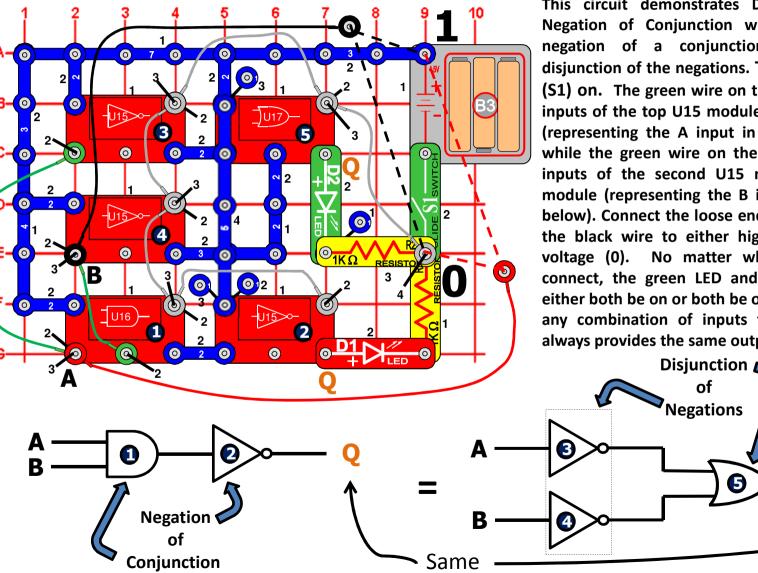


This circuit demonstrates how the NOR Gate (U19) works. Turn the slide switch (S1) on. Connect the loose ends of the red and black wires to either low voltage (denoted as a "0") or high voltage (denoted as a "1"). If, and only if, both input A AND input B are low (0), then the Q output on U19 will be high (1), and the red LED (D1) will be on. The output logic is exactly the opposite of the OR gate, hence this gate is called the NOT OR or NOR Gate.

Input (A)	Input (B)	Output (Q)
0	0	1
0	1	0
1	0	0
1	1	0

NOR gates are used in digital logic circuits to perform an inverted logical add. When one of the inputs is high (1), the output is low. The output will only be high (1) when both inputs are low.

Project 6: Exclusive OR (XOR) Gate

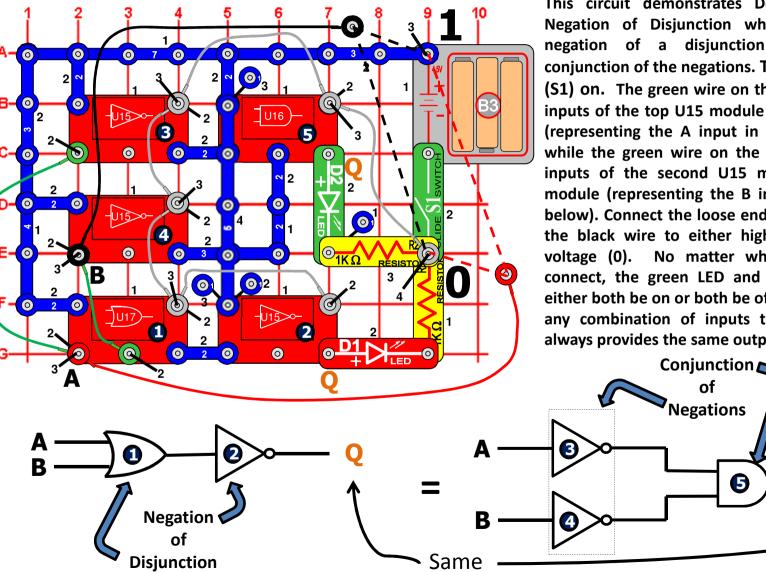


This circuit demonstrates how the Exclusive OR (XOR) Gate (U20) works. Turn the slide switch (S1) on. Connect the loose ends of the red and black wires to either low voltage (denoted as a "0") or high voltage (denoted as a "1"). If input A and input B are exclusive (i.e. different), then the Q output on U20 will be high (1), and the red LED (D1) will be on.

Input (A)	Input (B)	Output (Q)
0	0	0
0	1	1
1	0	1
1	1	0

XOR gates are used in digital logic circuits to perform a comparison. When the inputs are mutually exclusive (i.e. different), then the output is high (1). When the inputs are the same, then the output is low (0).

Project 7: De Morgan's Law Negation of Conjunction

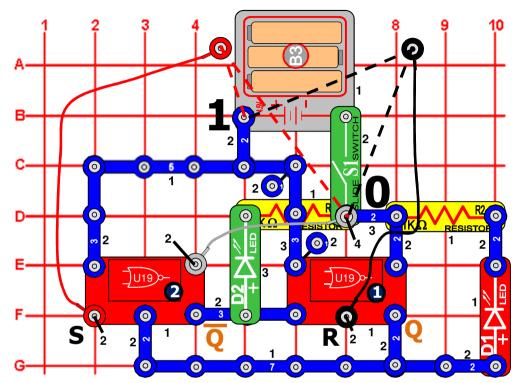


This circuit demonstrates De Morgan's Law of Negation of Conjunction which states that the negation of a conjunction is equivalent to disjunction of the negations. Turn the slide switch (S1) on. The green wire on the left connects the A inputs of the top U15 module and the U16 module (representing the A input in the diagrams below) while the green wire on the right connects the B inputs of the second U15 module and the U16 module (representing the B input in the diagrams below). Connect the loose ends of the red wire and the black wire to either high voltage (1) or low voltage (0). No matter what combination you connect, the green LED and red LED will always either both be on or both be off, demonstrating that any combination of inputs to the two diagrams always provides the same outputs.

6

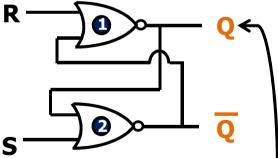
Negation of Conjunction = Disjunction of Negations.

Project 8: De Morgan's Law Negation of Disjunction

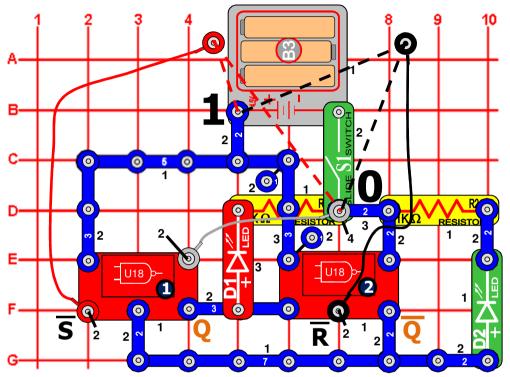


This circuit demonstrates De Morgan's Law of Negation of Disjunction which states that the negation of a disjunction is equivalent to conjunction of the negations. Turn the slide switch (S1) on. The green wire on the left connects the A inputs of the top U15 module and the U17 module (representing the A input in the diagrams below) while the green wire on the right connects the A inputs of the second U15 module and the U17 module (representing the B input in the diagrams below). Connect the loose ends of the red wire and the black wire to either high voltage (1) or low voltage (0). No matter what combination you connect, the green LED and red LED will always either both be on or both be off, demonstrating that any combination of inputs to the two diagrams always provides the same outputs.

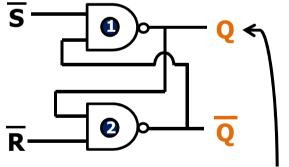
6


Negation of Disjunction = Conjunction of Negations.

Project 9: S-R NOR Latch


This circuit demonstrates how the S-R NOR Latch works. Turn the slide switch (S1) on. Connect the loose end of the red wire (S input) to 0 and the loose end of the black wire (R input) to 1. The red LED will be off (S=0, R=1 resets output Q to 0). Now disconnect the black wire from 1 and connect it to 0. The red LED remains off (S=0. R=0 holds the last output state). Now disconnect the red wire from 0 and connect it to 1. The red LED will be on (S=1, R=0 sets the output to 1). Now disconnect the red wire from 1 and connect it to 0. The red LED remains on (S=0, R=0 holds the last output state). S=R=1 is the forbidden state, can you explain why? The green LED should always be the opposite of the red LED (green LED off when red LED on and green LED on when red LED off) since the green LED represents $\overline{\mathbf{Q}}$ which is the opposite of Q.

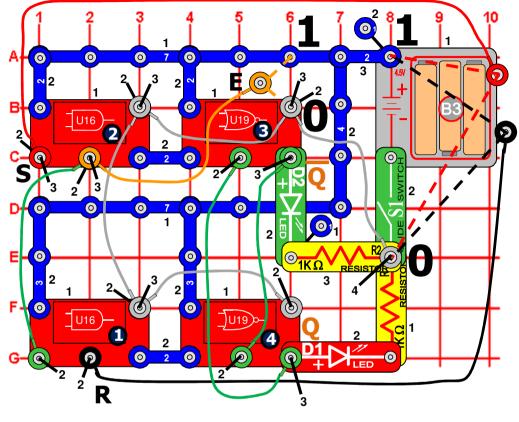
Input (S)	Input (R)	Output (Q)	Output (Q)
0	0	Hold State	Hold State
1	0	1	0
0	1	0	1
1	1	Not Allowed	Not Allowed

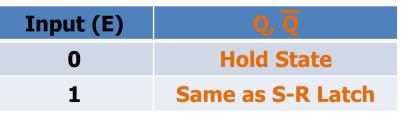


- Stays the same when S=R=0
- Reset to 0 when S=0 & R=1
- Set to 1 when S=1 & R=0
- S=R=1 is forbidden

Project 10: S-R NAND Latch

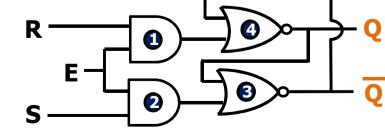
This circuit demonstrates how the S-R NAND Latch works. Turn the slide switch (S1) on. Connect the loose end of the red wire $(\overline{S} \text{ input})$ to 1 and the loose end of the black wire (\overline{R} input) to 0. The red LED will be off $(\overline{S}=1, \overline{R}=0$ resets output Q to 0). Now disconnect the black wire from 0 and connect it to 1. The red LED remains off ($\overline{S}=1$, $\overline{R}=1$ holds the last output state). Now disconnect the red wire from 1 and connect it to 0. The red LED will be on ($\overline{S}=0$, $\overline{R}=1$ sets the output to 1). Now disconnect the red wire from 0 and connect it to 1. The red LED remains on ($\overline{S}=1$, $\overline{R}=1$ holds the last output state). $\overline{S}=\overline{R}=0$ is the forbidden state, can you explain why? The green LED should always be the opposite of the red LED (green LED off when red LED on and green LED on when red LED off) since the green LED represents $\overline{\mathbf{Q}}$ which is the opposite of \mathbf{Q} .

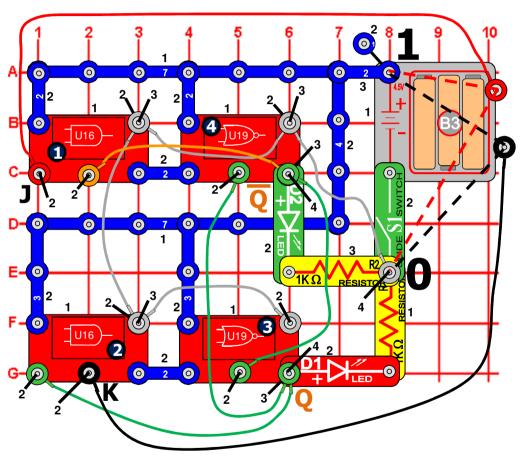



- Stays the same when S=R=1
- Reset to 0 when $\overline{R}=0 \& \overline{S}=1$
- Set to 1 when $\overline{R}=1 \& \overline{S}=0$
- S=R=0 is forbidden

Input (\overline{S})	Input (\overline{R})	Output (Q)	Output (Q)
0	0	Not Allowed	Not Allowed
1	0	0	1
0	1	1	0
1	1	Hold State	Hold State

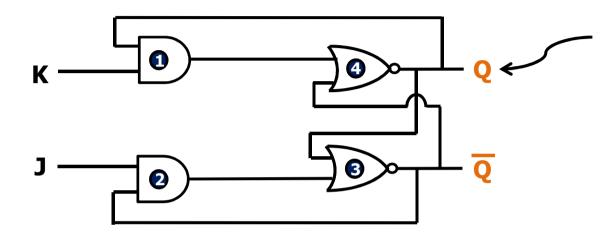
S-R NAND Latch is an alternative to S-R NOR Latch where the inputs S and R are now active low.


Project 11: Gated S-R Latch


 Operates as S-R Latch when E=1
 Holds output state when E=0

This circuit demonstrates how a Gated S-R Latch works. Turn the slide switch (S1) on. Connect one the loose end of the orange wire to 1 (Latch enabled). Repeat the experiments from Project 9 to verify that this now functions as an S-R NOR Latch. Now with S=1 and R=0 (red LED should be on), disconnect the orange wire from 1 and connect it to 0 (Latch disabled). The red LED should now remain on no matter whether you connect the red and black wires to 1 or 0. Now with S=0 and R= 1, move the orange wire back to 1 (Latch enabled so red LED should go off). Now move the orange wire back to 0 again (Latch disabled). The red LED should now remain off no matter whether you connect the red and black wires to 1 or 0. The green LED should always be the opposite of the red LED (green LED off when red LED on and green LED on when red LED off) since the green LED represents $\overline{\mathbf{Q}}$ which is the opposite of Q.

The Enable input (E) can be used as a clock input, or a read/write strobe.


Project 12: J-K Latch

This circuit demonstrates how a J-K Latch works. Turn the slide switch (S1) on. Connect the loose ends of the red and black jumper wires to either 0 or 1.

- When the red jumper is connected to 0 & the black jumper is connected to 1, then the red LED will be off (J=0, K=1 resets the output to 0)
- When the red jumper is connected to 1 & the black jumper is connected to 0, then red LED will be on (J=1, K=0 sets the output to 1)
- When the red & black jumpers are both connected to 0, then the red LED will stay the same
 - Try starting with the LED off (J=0, K=1) and then move the black lead to 0 (K=0) to see that the red LED stays off
 - Try starting with the LED on (J=1, K=0) and then move the red lead to 0 (J=0) to see that the red LED stays on
- When the red & black jumpers are both connected to 1, then the red LED will toggle between on & off continuously (J=1, K=1 toggles output)
 - Note that the red and green LEDs appear dim when J=K=1 since they are toggling between on and off
- The green LED should always be the opposite of the red LED (green LED off when red LED on and green LED on when red LED off) since the green LED represents Q which is the opposite of Q.

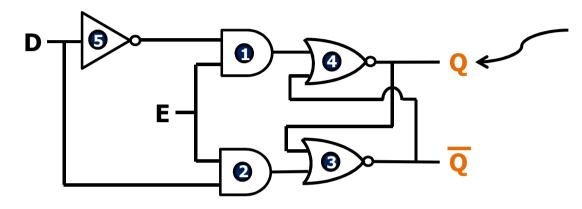
Project 12: J-K Latch



- Stays the same when J=K=0
- Reset to 0 when J=0 & K=1
- Set to 1 when J=1 & K=0
- Toggles when J=K=1

Input (J)	Input (K)	Output (Q)	Output (Q)
0	0	Hold State	Hold State
1	0	1	0
0	1	0	1
1	1	Toggle	Toggle

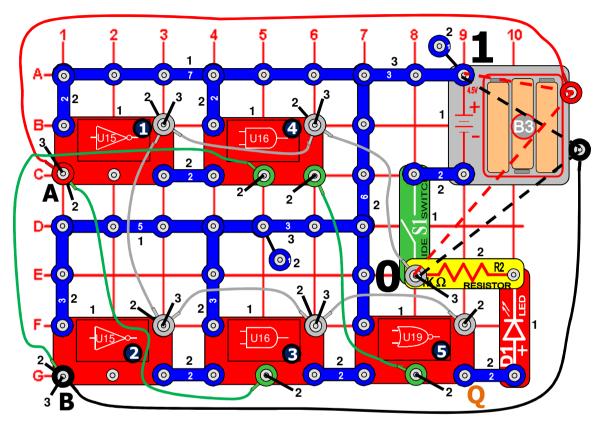
J-K Latches and flip flops are used for memory devices and counters.


Project 13: Gated D Latch

This circuit demonstrates how a Gated D Latch works. Turn the slide switch (S1) on. Connect one end of the red jumper wire to the A input of the lower U16 module and the B input of the upper U16 module (this represents the E input) and connect the loose end of the red wire to 1 (Latch enabled). Connect one end of the black wire to the A input of the U15 on the left and the B input of the lower U16 module (this represents the D, or data, input). Note that when you connect the loose end of the black wire to 1, the red LED is on, and when you connect the loose end of the black wire to 1, the red LED is on, and when you connect the loose end of the black wire to 1, the red LED is on, and when you connect the red wire to 0. Note that the red LED remains on now, regardless of whether the black wire is connected to 1 or 0. The green LED should always be the opposite of the red LED (green LED off when red LED on and green LED on when red LED off) since the green LED represents \overline{Q} which is the opposite of Q.

Details of the Gated D Latch Block Diagram and Logic Chart on Next Page.

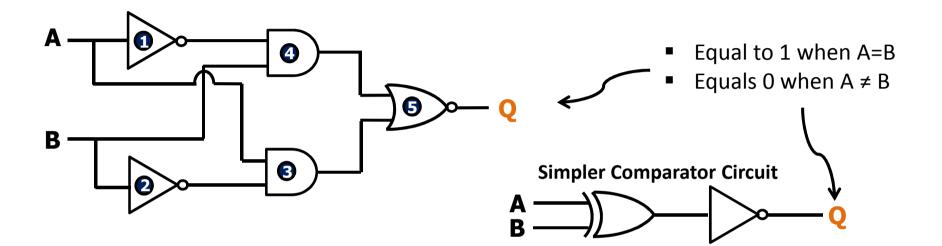
Project 13: Gated D Latch



- Stays the same when E=0
- Reset to 0 when D=0 & E=1
- Set to 1 when D=1 & E=1

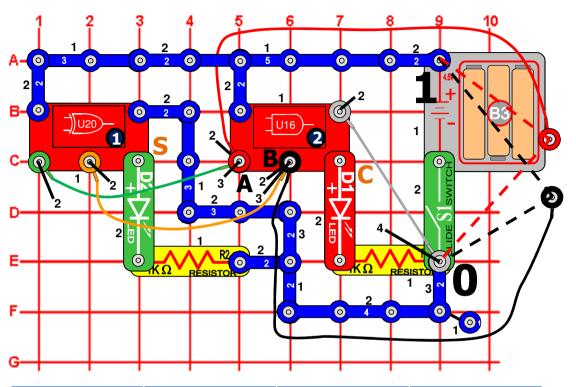
E	D	Output (Q)	Output ($\overline{\mathbf{Q}}$)
0	0 or 1	Hold State	Hold State
1	0	0	1
1	1	1	0

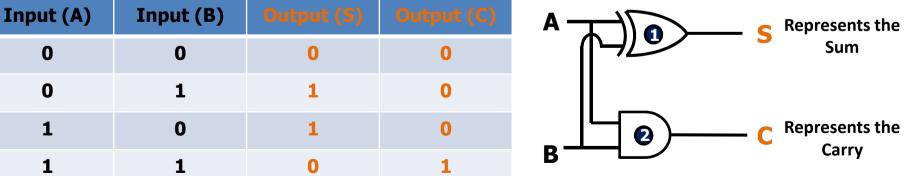
The Gated D Latch exploits the fact that the active input combinations on an S-R Latch (S=1, R=0 and S=0, R=1) produce opposite outputs. Thus, the Gated D Latch can be thought of as a single input Gated S-R Latch. Gated D Latches can be used as Input/Output (I/O) ports.


Project 14: Comparator

This circuit demonstrates how a comparator works. Turn the slide switch (S1) on. When the loose ends of the red and black wires are connected to the same input (either 1 or 0), the red LED will be on (indicating the inputs are the same). When the loose ends of the red and black wires are connected to different inputs (one to 1 and the other to 0), the red LED is off (indicating the inputs are different). Can you think of a much simpler circuit than the one above that achieves the same result (hint: it can be done with just 2 gates)?

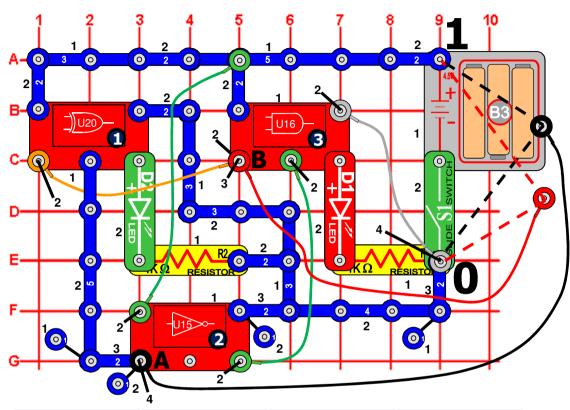
Details of the Comparator Block Diagram and Logic Chart on Next Page.


Project 14: Comparator

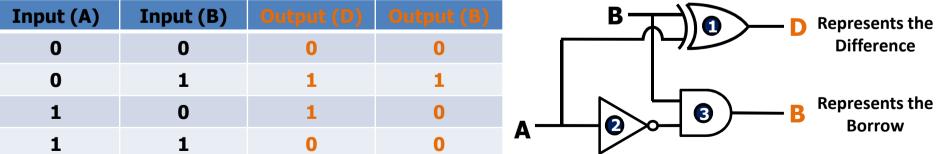

Α	В	Output (Q)
0	0	1
0	1	0
1	0	0
1	1	1

Comparators are used in Central Processing Units (CPUs) and

Project 15: Half Adder

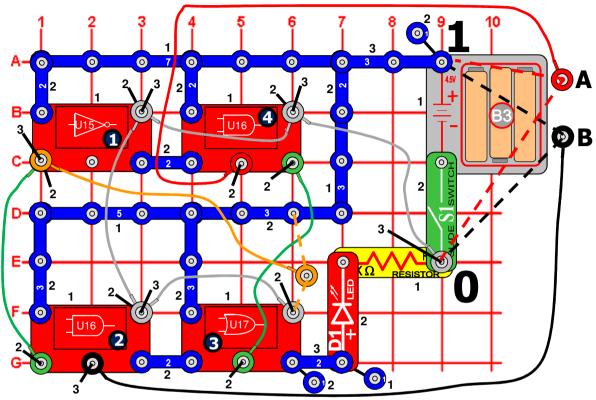


This circuit demonstrates how a half adder works. Turn the slide switch (S1) on. The green LED represents the Sum (S) and the red LED represents the Carry (C). When the loose ends of the red and black wires are both connected to 0 (0+0), both LEDs are off (S=C=0). When one of the loose ends of the red and black wires are connected to different inputs (one to 0 and the other to 1), the green LED is on and the red LED is off (S=1, C=0). When the loose ends of the red and black wires are both connected to 1 (1+1), the green LED is off and the red LED is on (S=0, C=1) indicating an overflow condition.



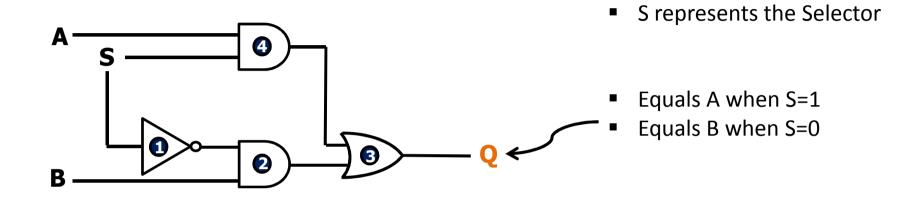
Adders are used in computers and processors as arithmetic logic units, as well as to calculate addresses, table indices, etc..

Project 16: Half Subtractor



This circuit demonstrates how half а subtractor works. Turn the slide switch (S1) on. The green LED represents the Difference (D) of input A minus input B and the red LED represents the Borrow (B). When the loose ends of the red and black wires are both connected to 0 (0-0) or to 1 (1-1), both LEDs are off (D=B=0). When the loose end of the red wire is connected to 1 and the loose end of the black wire is connected to 0 (1-0), the green LED is on and the red LED is off (D=1, B=0). When the loose end of the red is connected to 0 and the loose end of the black wire is connected to 1 (0-1), the green and red LEDs are both on (D=1, B=1), indicating a borrow condition.

Subtractors are often implemented with adders since the incremental cost is low (one additional NOT gate).


Project 17: Multiplexer

This circuit demonstrates how a multiplexer works. Turn the slide switch (S1) on. The loose end of the orange wire represents the Selector (S). First connect the loose end of the orange wire to 1 (this selects the black input). The red LED will now be on when the black wire is connected to 1 and off when the black wire is connected to 0 (regardless of what the red wire is connected to). Now connect the loose end of the orange wire to 0 (this selects the red input). The red LED will now be on when the red wire is connected to 1 and off when the red wire to 0 (this selects the red input). The red LED will now be on when the red wire is connected to 1 and off when the red wire is connected to 0 (regardless of 0 (regardless 0

Details of the Multiplexer Block Diagram and Logic Chart on Next Page.

Project 17: Multiplexer

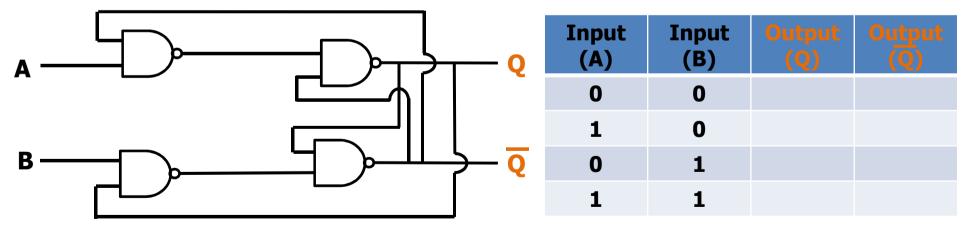
Input (A)	Input (B)	Input (S)	Output (Q)
0 or 1	0	0	0
0 or 1	1	0	1
0	0 or 1	1	0
1	0 or 1	1	1

Multiplexers are often used as switches (e.g. telephone line switch, HDMI switch, etc.).

1. The output will be LOW (0) for any case when one or more input is LOW (0) for a(n):

- a) OR gate
- b) NAND gate
- c) AND gate
- d) XOR gate

2. The output of a NOR gate is HIGH (1) if:

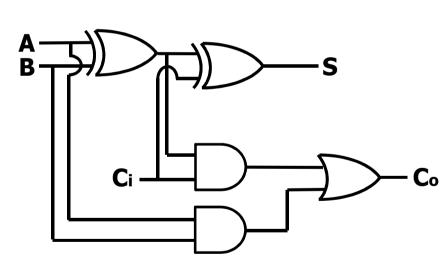

- a) All inputs are HIGH (1)
- b) Any input is HIGH (1)
- c) Any Input is LOW (0)
- d) All inputs are LOW (0)

3. Which of the following is true about a 2-input NAND gate:

- a) If one of the inputs is HIGH (1), then the output is always the same as the opposite of the other input
- b) There are 8 possible input combinations
- c) The output is LOW (1) if any input is HIGH (1)
- d) If one of the inputs is LOW (0), then the output is always the same as the other input

Quiz

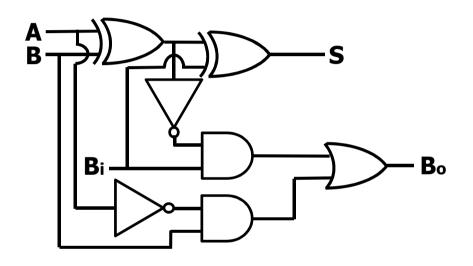
- 4. Explain why S=R=1 is not allowed for the S-R NOR circuit.
- 5. Using De Morgan's laws, show how you can derive the S-R NAND gate circuit from the S-R NOR circuit. Note that the outputs of an S-R NOR latch are the opposite of the S-R NAND latch.
- 6. Draw the truth table for the circuit below?



7. What latch is the circuit in question 8 equivalent to?

- a) D Latch
- b) S-R NOR Latch
- c) S-R NAND Latch
- d) J-K Latch
- 8. Show how you would create a gated S-R NAND latch.
- 9. Which of the following is NOT true about a J-K latch:
- a) It has a "not allowed" state
- b) J-K latches are sometimes used in counters
- c) J-K latches are sometimes used in memory devices
- d) The J-K latch is an extension of the S-R NOR latch that eliminates the "not allowed" state

Quiz


- 10. Show how a comparator can be built with only 2 gates.
- 11. The figure below represents a full adder circuit. A & B are the inputs and C_i is the carry input, while S is the output and C₀ is the carry output. Complete the truth table for the outputs of this full adder circuit.

Α	В	Ci	S	Co
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

12. The figure below represents a full subtractor circuit. A & B are the inputs and B_i is the borrow input, while S is the output and C₀ is the borrow output. Complete the truth table for the outputs of this full adder circuit.

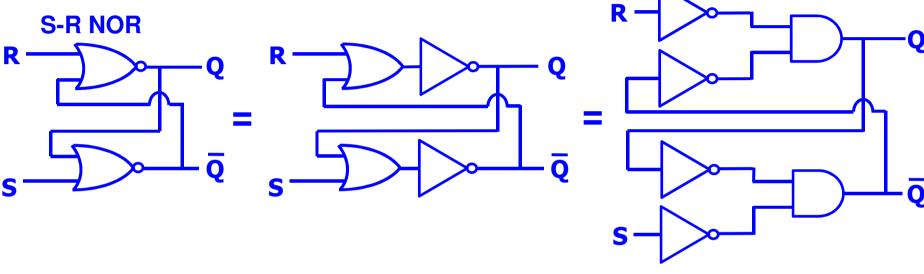
Α	В	Bi	S	Bo
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

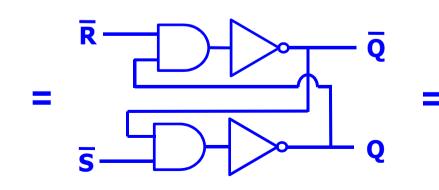
13. Design a 4-input multiplexer circuit.

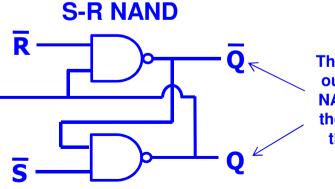
- 1. The output will be LOW (0) for any case when one or more input is LOW (0) for a(n):
 - a) OR gate
 - b) NAND gate
 - c) AND gate
 - d) XOR gate

2. The output of a NOR gate is HIGH (1) if:

- a) All inputs are HIGH (1)
- b) Any input is HIGH (1)
- c) Any Input is LOW (0)
- d) All inputs are LOW (0)

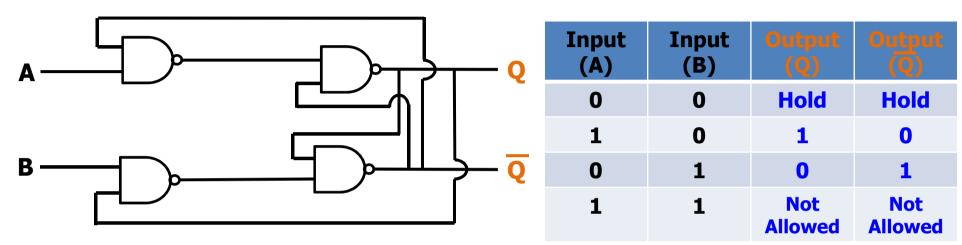

3. Which of the following is true about a 2-input NAND gate:

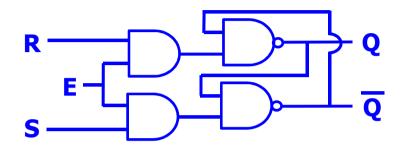

- a) If one of the inputs is HIGH (1), then the output is always the opposite of the other input
- b) There are 8 possible input combinations
- c) The output is LOW (1) if any input is HIGH (1)
- d) If one of the inputs is LOW (0), then the output is always the same as the other input


4. Explain why S=R=1 is not allowed for the S-R NOR Latch circuit.

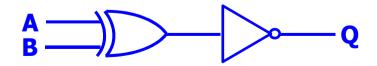
When S=R=1, this forces both the Q and Q outputs to always be low (0), thus violating the logical equation that Q = not Q

5. Using De Morgan's laws, show how you can derive the S-R NAND gate circuit from the S-R NOR circuit. Note that the outputs of an S-R NOR latch are the opposite of the S-R NAND latch.

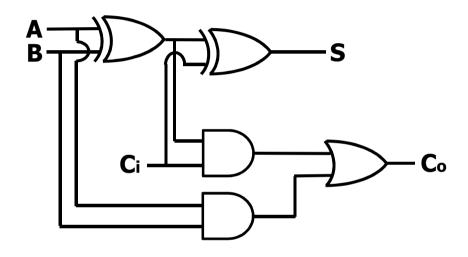



This shows that outputs of S-R NAND latch are the opposite of the S-R NOR latch

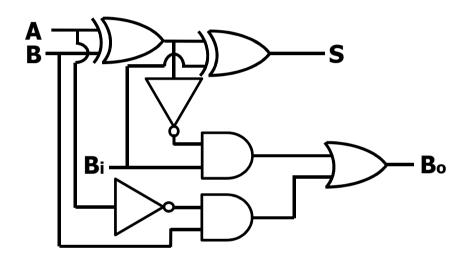
6. Draw the truth table for the circuit below?



- 7. What latch is the circuit in question 8 equivalent to?
 - a) D Latch
 - b) S-R NOR Latch
 - c) S-R NAND Latch
 - d) J-K Latch

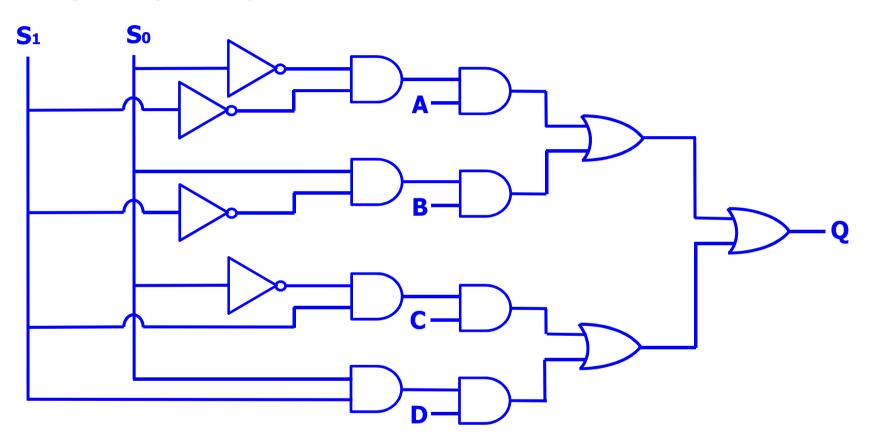

8. Show how you would create a gated S-R NAND latch.

- 9. Which of the following is NOT true about a J-K latch:
 - a) It has a "not allowed" state
 - b) J-K latches are sometimes used in counters
 - c) J-K latches are sometimes used in memory devices
 - d) The J-K latch is an extension of the S-R NOR latch that eliminates the "not allowed" state
- 10. Show how a comparator can be built with only 2 gates.



11. The figure below represents a full adder circuit. A & B are the inputs and Ci is the carry input, while S is the output and Co is out carry output. Complete the truth table for the outputs of this full adder circuit.

Α	В	Ci	S	Co
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1


12. The figure below represents a full subtractor circuit. A & B are the inputs and B_i is the borrow input, while S is the output and C₀ is the borrow output. Complete the truth table for the outputs of this full adder circuit.

Α	В	Bi	S	Bo
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

13. Design a 4-input multiplexer circuit.

When $S_0=S_1 = 0$, then Q=AWhen $S_0=1$, $S_1=0$, then Q=BWhen $S_0=0$, $S_1=1$, then Q=CWhen $S_0=S_1=1$, then Q=D

ELENCO[®]

150 Carpenter Avenue Wheeling, IL 60090 (847) 541-3800 Website: www.elenco.com e-mail: elenco@elenco.com