WARRANTY POLICY
Your digital multimeter has been tested and conforms to our rigid requirements on performance and durability. It is guaranteed to be free of defects in workmanship, materials and construction for a period of 2 years. If this product should fail during normal use within the first 3 months from the date of purchase, ELENCO® will repair or replace the unit at no cost. For the remainder of the warranty period, a nominal service charge is required to cover shipping and handling.

When returning merchandise for repair, please include proof of purchase, a brief letter of explanation of problem and sufficient packing material. Before returning any merchandise, please call our service department at (847) 541-3800 to obtain a return authorization number (RA).

ELENCO® • Service Department
150 Carpenter Avenue • Wheeling, IL 60090

ELENCO®
150 Carpenter Ave. • Wheeling, IL 60090
(847) 541-3800 • Website: www.elenco.com
e-mail: elenco@elenco.com
CAUTION

Failure to turn off the DMM before installing the battery could result in damage to the meter if the battery is connected to the battery terminal incorrectly.

6-2. Fuse Replacement

This meter is provided with a 200mA/250V 5 x 20mm fuse to protect 200μA, 2000μA, 20mA, 200mA ranges.

NOTE: The 10A circuit is not fused.

1. Turn off the power.
2. Remove the two screws from the back of the case.
3. Remove the fuse from the holder and replace it with a new fuse of the specified value.

Fuse Numbers

- 200mA/250V 5 x 20mm Bussman Fuse #GMA 200
- 200mA/250V 5 x 20mm Little Fuse #235-200
- 200mA/250V 5 x 20mm Elenco® Fuse #530020
6. Maintenance

WARNING
Before attempting battery & fuse removal or replacement, disconnect the test leads from any energized circuits to avoid hazard.

6-1. Battery Replacement
Replace the battery when “±” appears on the display.

1. Remove the two screws on the case cover. Then, detach it from the top case.

2. Unsnap the battery from the connector and replace it with a new 9 volt battery.

3. Close the case cover and secure it with the screws.

1. Safety Information
To ensure that the meter is used safely, follow all of the safety and operation instructions in this manual. If the meter is not used as described in the manual, the safety features of the meter might be impaired.

- Do not use the meter if the meter or the test leads look damaged, or if you suspect that the meter is not operating properly.
- Turn off the power to the circuit under test before cutting, unsoldering, or breaking the circuit. Small amounts of current can be dangerous.
- Use caution when working above 60VDC or 30VAC rms. Such voltages pose a shock hazard.
- When using the test lead, keep your fingers behind the guards on the test lead.
- Disconnect the live test lead before disconnecting the common test lead.
- To avoid damage to the meter, do not exceed the input limits shown below.
- This digital multimeter is designed for indoor use only.

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>INPUT JACK</th>
<th>INPUT LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDC</td>
<td>VΩmA & COM</td>
<td>600VDC or 600Vrms AC</td>
</tr>
<tr>
<td>VAC</td>
<td>VΩmA & COM</td>
<td>600VDC or 600Vrms AC</td>
</tr>
<tr>
<td>Ω /</td>
<td>VΩmA & COM</td>
<td>220Vrms @ 15 sec.</td>
</tr>
<tr>
<td>μA, mA DC</td>
<td>VΩmA & COM</td>
<td>200mA DC</td>
</tr>
<tr>
<td>10A DC</td>
<td>10A & COM</td>
<td>10A DC @ 10 sec.</td>
</tr>
</tbody>
</table>

Refer to Section 4-2 on page 6 for complete specifications.
2. Introduction

This meter is a 3½ digit digital multimeter that is rugged, reliable and convenient to use, while providing all of the accuracy and features needed for any application. It performs DC/AC voltage, DC current, resistance, transistor, diode, and audible continuity measurement. It is designed for technicians and students.

Transistor h_{FE} Measurement

1. Set the RANGE switch to the h_{FE} position.

2. Determine whether the transistor is an NPN or PNP-type and locate the Emitter, Base and Collector leads. Insert the leads into the proper holes of the h_{FE} socket on the front panel.

3. The meter will display the approximate h_{FE} value at the condition of base current 10μA and VCE 2.8V.

Audible Continuity Test

1. Plug the red test lead into the “V Ω mA” jack and the black test lead into the “COM” jack.

2. Set the RANGE switch to the position.

3. Connect the test leads to two points of the circuit to be tested. If the resistance is lower than 100Ω, the buzzer will sound.
Resistance Measurement

1. Plug the red test lead into the “V Ω mA” jack and the black test lead into the “COM” jack.
2. Set the RANGE switch to the desired Ω position.
3. If the resistance being measured is connected to a circuit, turn off the power and discharge all capacitors before measuring.
4. Connect the test leads to the circuit to be measured.
5. Read the resistance value on the digital display.

Diode Measurement

1. Plug the red test lead into the “V Ω mA” jack and the black test lead into the “COM” jack.
2. Set the RANGE switch to the position.
3. Connect the red test lead to the anode of the diode to be measured and the black test lead to the cathode.
4. The forward voltage drop in mV will be displayed. If the diode is reversed, the number “1” will be displayed.

3. Features

- 7 Functions / 17 measuring ranges
- 0.5% Basic accuracy
- 1MΩ input impedance
- Overload protection
- Transistor test
- Pocket-size
- Audible continuity test

4. Specifications

4-1. General Specifications

Display
3½ LCD 1999 count display.
Polarity
Automatic “—” is displayed.
Overrange Indication
“1” on LCD is displayed.
Low Battery Indication
“−−” sign on LCD readout.
Operation Temperature
32°F to 122°F
Power
9V alkaline or carbon zinc battery (NEDA 1604)
Battery Life (typical)
100 hours w/ carbon zinc cells
200 hours w/ alkaline cells
Dimensions
5” (H) x 2 3/4” (W) x 7/8” (D)
Weight
Approximately 0.30 lb.
Accessories
Test leads - 1 pair
Operator’s manual
4-2. Measurement Specifications

Accuracy of specifications apply for 1 year after purchase when operated in a temperature of 18°C to 28°C (64°F to 82°F) and a relative humidity of less than 75%.

Basic electrical specifications are given as \(\pm [\% \text{ of reading} + \text{[number of least significant digits]})\]}

DC Voltage

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>200mV</td>
<td>100(\mu)V</td>
<td>(\pm (0.25% \text{ of rdg} + 2\text{dgt}))</td>
</tr>
<tr>
<td>2000mV</td>
<td>1mV</td>
<td>(\pm (0.5% \text{ of rdg} + 2\text{dgt}))</td>
</tr>
<tr>
<td>20V</td>
<td>10mV</td>
<td>(\pm (0.5% \text{ of rdg} + 2\text{dgt}))</td>
</tr>
<tr>
<td>200V</td>
<td>100mV</td>
<td>(\pm (0.5% \text{ of rdg} + 2\text{dgt}))</td>
</tr>
<tr>
<td>600V</td>
<td>1V</td>
<td>(\pm (0.5% \text{ of rdg} + 2\text{dgt}))</td>
</tr>
</tbody>
</table>

OVERLOAD PROTECTION: 220Vrms AC for 200mV range and 600VDC or 600Vrms AC for other ranges.

AC Voltage

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>200V</td>
<td>100mV</td>
<td>(\pm (1.2% \text{ of rdg} + 10\text{dgt}))</td>
</tr>
<tr>
<td>600V</td>
<td>1V</td>
<td>(\pm (1.2% \text{ of rdg} + 10\text{dgt}))</td>
</tr>
</tbody>
</table>

OVERLOAD PROTECTION: 600VDC for 600Vrms for all ranges.

RESPONSE: Average responding, calibrated in rms of a sine wave.

FREQUENCY RANGE: 45Hz - 450Hz

DC Current

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>200(\mu)A</td>
<td>100nA</td>
<td>(\pm (1% \text{ of rdg} + 2\text{dgt}))</td>
</tr>
<tr>
<td>2000(\mu)A</td>
<td>1(\mu)A</td>
<td>(\pm (1% \text{ of rdg} + 2\text{dgt}))</td>
</tr>
<tr>
<td>20mA</td>
<td>10(\mu)A</td>
<td>(\pm (1% \text{ of rdg} + 2\text{dgt}))</td>
</tr>
<tr>
<td>200mA</td>
<td>100(\mu)A</td>
<td>(\pm (1.2% \text{ of rdg} + 2\text{dgt}))</td>
</tr>
<tr>
<td>10A</td>
<td>10mA</td>
<td>(\pm (2% \text{ of rdg} + 2\text{dgt}))</td>
</tr>
</tbody>
</table>

OVERLOAD PROTECTION: 200mA 250V fuse (10A range unfused).

MEASURING VOLTAGE DROP: 200mV.

AC Current Measurement

1. Plug the red test lead into the “V Ω mA” jack and the black lead into the “COM” jack.
2. Set the RANGE switch to the desired ACV position.
3. Connect the test leads to the device or circuit being measured.
4. Turn on the power of the device or circuit being measured. The voltage value will appear on the digital display.

DC Voltage Measurement

1. Plug the red test lead into the “V Ω mA” jack and the black test lead into the “COM” jack (for measurements between 200mA and 10A, connect the red test lead to the “10A” jack. Make sure that the test leads are pushed all the way into the jack).
2. Set the RANGE switch to the desired DCA position.
3. Open the circuit to be measured and connect the test leads IN SERIES with the load in which current is to be measured.
4. Read the current value on the digital display.
5-3. How to Make Measurements

⚠️ WARNING

1. To avoid electrical shock hazard and/or damage to the meter, do not measure voltages that might exceed 600V above earth ground.

2. Before using the instrument, inspect the test leads, connectors, and probes for cracks, breaks, or grazes in the insulation.

DC Voltage Measurement

1. Plug the red test lead into the “V Ω mA” jack and the black test lead into the “COM” jack.

2. Set the RANGE switch to the desired DCV position. If the voltage to be measured is not known beforehand, set the switch to the highest range and reduce it until a satisfactory reading is obtained.

3. Connect the test leads to the device or circuit being measured.

4. Turn on the power of the device or circuit being measured. The voltage value will appear on the digital display along with the voltage polarity.

Resistance

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>200Ω</td>
<td>0.1Ω</td>
<td>±(0.8% of rdg+2dgt)</td>
</tr>
<tr>
<td>2kΩ</td>
<td>1Ω</td>
<td>±(0.8% of rdg+2dgt)</td>
</tr>
<tr>
<td>20kΩ</td>
<td>10Ω</td>
<td>±(0.8% of rdg+2dgt)</td>
</tr>
<tr>
<td>200kΩ</td>
<td>100Ω</td>
<td>±(0.8% of rdg+2dgt)</td>
</tr>
<tr>
<td>2000kΩ</td>
<td>1kΩ</td>
<td>±(1% of rdg+2dgt)</td>
</tr>
</tbody>
</table>

OVERLOAD PROTECTION: 15 seconds maximum 220Vrms on all ranges.

MAXIMUM OPEN CIRCUIT VOLTAGE: 2.8V.

Audible Continuity

- Built-in buzzer sounds if resistance is less than 100Ω.

OVERLOAD PROTECTION: 220Vrms for a maximum of 15 seconds.

TR hFE

<table>
<thead>
<tr>
<th>Range</th>
<th>Base Current</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPN</td>
<td>@2.8V DC</td>
<td>10μA DC</td>
</tr>
<tr>
<td>PNP</td>
<td>@2.8V DC</td>
<td>10μA DC</td>
</tr>
</tbody>
</table>

DIODE TEST

Measures forward resistance of a semiconductor junction in kΩ at max. test current of 1.0mA.
5. Operation

5-1 Preparation & Caution Before Measurement

1. The function switch should be set to the range to be measured before operation. If the function must be switched during a measurement, always remove the test leads from the circuit being measured.

2. If the unit is used near noise-generating equipment, be aware that the display may become unstable or indicate large errors.

3. Avoid using the unit in places with rapid temperature variations.

4. In order to prevent damage or injury to the unit, never fail to keep the maximum tolerable voltage and current, especially for the 10A current range.

5. Carefully inspect the test leads. If damaged, discard and replace.

6. Be sure to check the annunciator on the display for safety indicator.

5-2. Front Panel Description

1. Liquid crystal display
2. Function / rotary switch
3. TR \(h_\text{FE} \) test socket
4. 10A input jack
5. Plug-in connector for red (positive) test lead.
6. Plug-in connector for black (negative) test lead.