

SNAP-MICRO I

Instruction manual

Elenco® Electronics Inc.

TM

Rev B

1

Index to Pages
2. About This Manual
3. SECTION 1: ELECTRONIC COMPONENTS
4-6 Connectors, Resistors, Switches, Diodes, Motors, Speakers, Transistors, and U8 the Integrated Circuit Module
7 What is a Micro-Controller?
8 SECTION 2: PROGRAMMING & SNAP CIRCUIT® BASICS
8-10 Installing Software and Programming Cable
11-14 Building the Micro-Controller Circuit
15-19 PROJECT 1: Flow Chart Programming and Snap Circuit Basics
20-23 Testing A Flowchart Program
24 PROJECT 2: Adding Amplifier and Loudness Control
26 PROJECT 3: Comments and Program Length
30 PROJECT 4: Other Sounds
32 PROJECT 5: The Tune Wizard
35 PROJECT 6: Robotic Sounds
37 PROJECT 7: Switches and Digital Inputs
39 PROJECT 8: Counting and Displaying Events
42 PROJECT 9: Using Serial Terminal
44 PROJECT 10: Using Serout, Serin, and Terminal Window
47 PROJECT 11: Checking for Errors
48 PROJECT 12: The DC Motor/Generator
50 SECTION 3: PROGRAMMING FOR SNAP CIRCUITS®
50 PROJECT 13: The Flying Saucer
52 PROJECT 14: Analogue Sensors and Analog to Digital Conversion (adc)
56 PROJECT 15: Auto Calibrating Digital Voltmeter
59 PROJECT 16: Battery Tester
61 PROJECT 17: The Photo Resistor
63 PROJECT 18: Introduction to Data Loggers
66 PROJECT 19: Green Power Meter or An Energy Cost Data Logger
70 PROJECT 20: Audio Amplifier and Microphone
72 SECTION 4: AUDACITY®* & SOUND CIRCUITS
72 PROJECT 21: Audacity®
74 PROJECT 22: Investigating Sound of Clapping
77 PROJECT 23: The Clap-Data Program
80 PROJECT 24: Analyzing Clap Data
82 PROJECT 25: The Clap it ON, Clap it OFF Circuit

* Audacity is a registered trademark of Dominic M Mazzoni, South Pasadena, CA

2

About this manual

The Snap Circuit Micro-Controller manual is designed to quickly move the user into the world of micro-
controllers without any heavy mathematics or science background. All that is required is a computer with
a Windows® operating system and the Elenco® SCM400 starter kit.
The manual is divided into four separate sections:

Section 1 - Getting Started (Electronic Components)
Section 2 – Flow chart programming and Snap Circuit® basics
Section 3 - Programming for Snap Circuits®.
Section 4 – Audacity® and Sound Circuits.

The first section provides general information for getting started with Snap Circuits® and the program
editor. No prior understanding of micro-controllers is required. Most electronic components will be
explained using comparisons to easy to understand water pipe systems. In Section 2, a series of easy to
follow tutorials introduce the main features of both Flow Chart programming and the Snap Circuit®
system. In Section 3, the programming is extended to control some clever and practical Snap Circuits®.
In Section 4 an audio recording and editing program is introduced and used to gather data. This data is
then used to control a light with the sound of a clap. The software used for programming the micro-
controller is called the ‘Programming Editor’. The software and the programs that match this manual may
be found at Elenco.com/downloads

For more specific information on flow chart programming, syntax and examples of each BASIC
Command please see sections 1 & 2 ‘Getting Started & BASIC Commands’ located in the help file of the
programming editor. For more advanced micro-controller circuits that do not use Snap Circuits®, and
example programs, please see ‘Interfacing Circuits’ in the help file of the programming editor. If you
have a question about any command please post a question on the forum at www.picaxe.co.uk
For more information on Snap Circuits® or electronic components please run the water pipe analogies
included on the Snap Circuits® CD or visit the websites at www.elenco.com.

3

Single Spacer (4)

2 Space connector (9)

3 Space Connector (4)

4 Space Connector (3)

5 Space Connector (1)

6 Space Connector (1)

7 Space Connector (1)

Resistor 1000
Ohms or 1k
Ohms (2)

Resistor 10,000
Ohms or 10k
Ohms (2)

Resistor 100
Ohms (1)

LED Color Green (1)LED Color Red (1)

Slide Switch (1)

Jumper Wires (2) Black & Red

4.5 Volt Battery (1)

8 Pin Socket U21 with
micro installed (1)

USB Programming
Cable (1)

SECTION 1: ELECTRONIC COMPONENTS

8 Ohm speaker (1)

Variable Resistor (1)

NPN Transistor (2)

Resistor 100,000
Ohms or 100k
Ohms (1)

DC Motor (1)

Fan Blade (1)

Pushbutton
Switch (1)

microphone (1)
Light Dependent
Resistor (1)

Base Grid Clear (1)

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

Computer Interface Cable (1)

Elenco® CD Rev B (1)

100uF Capacitor (1)
.1uF Capacitor (1)

Rev B

4

ELECTRONIC COMPONENTS
First, consider voltage to be pressure on electrons to make them move in a wire. This is similar to water
pressure in a pipe to make the water move. For voltage we will use the symbol ‘V’ (volts).

Next consider the movement of electrons in a wire to be similar to the water moving in a water pipe. This
movement of electrons (or water) is called current and is represented by the symbol ‘I’ and measured in
units called amperes or amps.

Finally, let the friction of the wire (or water pipe) that tries to stop the current from flowing be called
resistance. For resistance we will use the letter ‘R’ or the Greek symbol (Ohm).

The ‘# Space Connector’ is really a wire or water pipe with close to zero resistance to
current flow. The # represents the number of bumps on the grid will be shorted. For example, a ‘3 Space
Connector’ covers 2 spaces and shorts (allows current to flow easily between) 3 bumps.

The Resistor limits the flow of current. The more resistance, the less current will flow at
the same pressure applied. For example, if a 10,000 Ohm or 10k  resistor is placed across a 4.5 volt
battery less current will flow through it than if a 1k  was placed across the same battery. To help
understand this principal, consider the following;

A water pipe filled with rocks would offer some
resistance to the flow of water.

A water pipe filled with sand would offer a greater
resistance to the water flow.

Water pipes filled only with water provide almost zero
resistance to the flow of water.
Most of the current will take the path
of least resistance as shown here.

5

The Variable Resistor ‘RV’ is really a resistor with a wiper arm that can slide from one side
of the resistor to the other side. As the wiper moves toward either end, the resistance
between the wiper and that end is reduced.

The Switch ‘S1’ is equivalent to a zero Ohm resistor when it is ON, and an infinite Ohm
resistor when it is OFF.

The LED (Light Emitting Diode) ‘D1’ is similar to a check valve in series with a light. Most
diodes act similar to water pipe check valves and must be installed in the correct direction for current to
flow.

Consider the water pipe check valve shown on
the right. When the piston pushes water into
the pipe the check valve opens and water
flows as shown. When the piston tries to suck
water from the pipe the check valve closes and
no current flows through the check valve.

Light is produced whenever current flows
through the LED check valve. The stronger the
current in the LED, the brighter the light. If the
LED is installed with the + symbol connected
to the negative voltage or ground the current
cannot flow and the LED will be off.

The DC Motor converts a DC voltage to a rotation. The direction of the rotation
depends on the polarity of the voltage.

+

6

Build the circuit shown below. Snap Circuit® Boards are built one level at a time. The base grid is
considered to be level 0. Parts placed directly on the base grid are said to be on level 1 and will have a
small black 1 next to the part. Parts placed on level 1 parts are said to be on level 2 and will have a
small black 2 next to the part. This process is continued until all parts are installed.

1. Turn Switch S1 to ON and the LED should
glow red. Turn S1 to OFF.

2. Turn D1 around so the + is on the switch
side and repeat step 1. In this case the
LED should be dark and never glow. Turn
Switch S1 to OFF and replace LED ‘D1’ in
the original position.

3. Replace the 1k  resistor ‘R2’ with a
100  resistor ‘R1’. The LED ‘D1’ should
be brighter when Switch ‘S1’ is turned ON.
Lower resistance produces more current,
and more current makes LED’s glow
brighter.

4. Use this circuit to test LED’s, resistors, and
switches S1 and S2.

The SPEAKER ‘SP’ is actually an 8  speaker
that can be used to produce audible tones.

The NPN Transistor ‘Q2’ is a device that amplifies current. For
example, a small current from base to emitter will produce a
much larger current from collector to emitter. The NPN
connections are labeled collector, base, and emitter as shown
here.

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 1

1

1

2

2

BASE

EMITTER

Similar device in
water pipe system

COLLECTOR

7

The U21 Snap Circuit® module is designed to accept any 8 pin
integrated circuit. If not already installed, remove the 8 pin integrated
circuit (micro-controller chip) from its package and carefully install it as
shown here
Make sure the dot on the integrated circuit and the red dot on the socket
are in the same corner.
The blue numbers printed on the socket platform are the pin numbers
used by the programming editor. In all situations we will use these
numbers to reference the output or input pin.

WHAT IS A MICRO-CONTROLLER?

A micro-controller is a ‘computer-on-a-chip’. It’s an integrated circuit that contains memory, logic,
processing, and input/output circuitry. Micro-controllers are programmed with specific instructions to
control many different devices. Once programmed the micro-controller is built into a product to make the
product more intelligent and easier to use.

For example, a microwave oven uses a single micro-controller to process information
from the keypad, display user information on a display, and control the turntable motor,
light, bell and cooking time.

One micro-controller can often replace a number of separate parts, or even complete electronic circuits.

Applications that use micro-controllers include household appliances, alarm
systems, medical equipment, vehicle subsystems, musical instruments, and
electronic instrumentation. Some modern cars contain many micro-controllers
used for engine management and remote locking.

8

INSTALLING SOFTWARE AND PROGRAMMING CABLE
To install the Programming Editor software you must have an internet connection. Click on the link
shown here and then follow instructions. http://www.elenco.com/downloads/SCM400dlinst.pdf

1. Follow instructions that appear to install editor.

2. Insert the USB programming cable into a USB port on your
computer. The cable will configure itself automatically. If you have
problems with configuration then contact Elenco®.

www.help@elenco.com
(note: If message appears “ looking for TTL232R-3V3” the driver is on the Elenco CD)

3. Start the Programming Editor software by clicking on the Program Editor Icon. If you get the same

version shown here the Icon will appear as shown here.

SECTION 2: PROGRAMMING & SNAP CIRCUIT BASICS

9

 When the program opens click the “view” menu and then the Options menu to display the Options panel
(this may also automatically appear on startup). On the ‘Mode’ tab select the 08M2 microcontroller.

If this box is checked the “Options” menu will open every time the program is started.

If this box is checked the “Options” menu will open every time
the program is started.

10

On the ‘Serial Port’ page also select the appropriate serial COM port (the port where you connected the
USB programming cable).
COM port should say “Ready to use” If you have COM port trouble see next page.

I

All windows may appear different depending on the contents of the file folders and the version of
windows being used. The “Options” window should remain as shown but with different COM numbers
depending on the port or plug used. If cables are move to different ports the option window may have to
be changed to match the port being used.

11

If you do not know your COM port number, you can find it by clicking “START” on main screen, then
click “Run” and type in devmgmt.msc and press enter key. The following screen should open.

Click on the “Ports (COM & LPT)” to get
the drop down menu and locate your port
number.

YOUR COMPUTER NAME

12

BUILDING THE MICRO CONTROLLER CIRCUIT
1. Snap Circuit® Boards are built one level at a time. The 70 post base grid is considered level 0.
2. Parts placed directly on the base grid are said to be on level 1 and will have a small black 1 next to

the part.
3. Parts placed on level 1 parts are said to be on level 2 and will have a small black 2 next to the part.
4. The above process continues until all levels are completed.
5. Build level 1 for the Micro Controller Circuit shown here:

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

1

1

1

1

1

13

6. Add level two to the grid.

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

1

1

1

1

2

2

2

2

2

1

2

14

7. Connect the serial cable to the Snap Circuit® Micro as shown below. Make sure the yellow lead is

connected to pin 0, the black ground lead is connected to battery minus, and the orange lead to S-
In. Turn switch S1 to ON.

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

1

1

1

1

2

2

2

2

2

1

2

To Computer

15

8. Using the program editor software, type in the following program:

9. Click the Program button to download the program to the hardware. If problem in programming, turn
power switch S1 off, click Program button again, and quickly turn S1 switch to on. After the download the
output LED should flash on and off every second. Congratulations! You have just programmed a micro-
controller integrated circuit to make an LED blink. Do not remove parts from the grid they will be used in
the next section. You may remove the Programming Cable now. Take note that turning the S1 switch
ON and OFF does not lose the programming. Turn the switch off to save battery power.

You can check your
program by clicking
the Syntax Check
button (ABC with a
check mark on it).
If Syntax is correct
proceed to step 9.

16

FLOW CHART PROGRAMMING AND SNAP CIRCUIT® BASICS.

PROJECT 1:

In Section 1 you built the basic Snap Circuit® board that will be used for most of the projects in this
section. It is important to have a clear road map when writing software. A Flow Chart will keep the
problems at a minimum and allow the programmer to quickly and easily add and remove sections of
programming without fatal errors. Open the programming editor and click on the New Flowchart button
shown here. Ignore upgrade box if it appears and click hide for future flowcharts.

The screen shown here will open and the Start box will be added to the grid.

Our first flowchart project will be to play the melody to Happy Birthday with and without flashing lights.

17

Next, click the right mouse button to activate the select arrow . Select the play box and drag it to
the start as shown on next page.

First click the ‘out’ button. The
menu bar will change to this
menu bar.

Click on the ‘Play’ Button and add this
box to the chart by dragging down
using left mouse button.

18

The Play command has the following functions (Syntax)`
 Function:
Play an internal tune on output pin 2.

PLAY tune, LED
The tune constant (0 - 3) specifies
which tune to play as follows;
0 - Happy Birthday
1 - Jingle Bells
2 - Silent Night
3 - Rudolph the Red Nosed Reindeer

LED is a constant (0 -3) that specifies
outputs that flash as the tune is being
played as follows;
0 - No outputs
1 - Output 0 flashes on and off
2 - Output 4 flashes on and off
3 - Output 0 and 4 flash alternately

The tune and LED constants can be changed in the edit box at the bottom of the program editor
screen when the play box is active. After the tune plays, there should be a few seconds of delay and
then the tune should play again. Return to the previous menu by clicking the curved arrow button .
Now click the delay button and use the previous technique to add the wait box.

19

WAIT
Function:

Pause for some time in whole seconds.

Syntax:
WAIT seconds
- Seconds is a constant (1-65), which
specifies how many seconds to pause.
Information:
This is a ‘pseudo’ command that is equivalent
to ‘pause’ times 1000, This command cannot
be used with variables and is a fixed delay
installed during programming. To change the
delay due to an input or other information,
use the Pause command.

Use the edit box at the bottom left corner of
the program editor window to change the
time to 5 seconds.
Note: The “Wait” box must be selected.

Next, the loop needs to be closed.

Click the return button to get back to the main
menu and select the Draw Lines tool.

Use the ‘Draw Lines’ tool to make the
flowchart on your program editor the same as
the one shown on the next page.

20

TESTING A FLOWCHART PROGRAM

Before running a simulation for the first
time the program editor should be
adjusted as follows:
First click View in the headings and
then select Options. When the window
below opens, select the Editor tab.

Set the following:
Text Mode to ‘Color Syntax’
Color Syntax Mode Options as
shown here.

Exit the options screen by clicking
the OK button on the bottom.

21

Every flowchart program should be tested and saved before it is converted to a down-loadable basic
program. Make sure your audio is turn on and at a level you can hear, then click on the Simulate button.

Flowchart Simulation

The program will start running and the
current block running will be highlighted in
red.

The output pin will be black
and turn green when the song is playing.

The RST button will reset the program to
start when clicked.

The other features of the Flowchart
simulator will be explained later as they are
used. End the simulation by clicking
anywhere on the grid.

After the Flowchart program has been
tested it should be saved in a folder on your
computer where all your Snap Circuit®
programs should be stored. In these
examples the folder C:\SC MICRO
PROJECTS was created for this purpose.

Open the drop down menu under ‘File’ in the program editor and click on ‘save as’ to save the flowchart
program in your Snap Circuit® folder as shown on next page.

22

You may want to set up a special folder on
your computer to store files as shown here, or
you can use the one that comes up when first
project is saved.

After filling in the proper information the
window should appear as shown on the left.
Click on the ‘Save’ button. The flowchart
program will be stored and the save window
will close.

On the program editor screen, under the PICAXE®
heading click on the ‘Convert Flowchart to Basic …’
command. The following screen will appear.

Open the simulator again by clicking on the Simulator
button. The song should play.

These Label numbers will be identical but may
be different from the ones shown here.

23

Program Flow Control and Breakpoints

Three new buttons appear on the main simulation panel. They are shortcut buttons for the Simulation

menu functions.

You can stop simulation by clicking Stop button.

 } single step through the simulation
 | | pause the simulation at the current line
 > start [] stop the simulation

Breakpoints can be placed or removed from the
program by clicking on the line number in the
margin. Alternately the Toggle breakpoint under
the Simulate heading may be used to
insert/remove a breakpoint at the current cursor
position. Breakpoints are indicated by a red bar in
the margin.

The >> button displays the variables panel.

Other Simulation Options will be discussed and demonstrated in future projects as they are used.
Other windows that open on this screen will be discussed later.

Rework your Snap Circuit board to the circuit shown on the next page.

24

Turn switch S1 to ON. Click on the ‘Program’ button or press F5 to download the new program. The new
program should play the Happy Birthday song and both LED’s should be off. In the program editor change the
play command to ‘play 3, 3’ and download again. When the new song starts playing remove the yellow snap and
rotate the ‘2 Snap’ to add the green LED. Rudolph the Red Nosed Reindeer should be playing and the LEDs
should flash in tempo with the music. Take some time to experiment with different combinations of the play.

To Computer

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

1
2

1
11

1

1

1
1

1 2

2

2

2

2
2

2

2

2

2

2

25

PROJECT 2: ADDING AMPLIFIER & LOUDNESS CONTROL

Modify the Snap Circuit® from the previous project to look like the circuit below. The variable resistor RV
will be used to increase and decrease the audio level. The NPN transistor ‘Q2’ is used to amplify the
power to the speaker ‘SP’.

Assuming the micro-controller is still programmed to play and flash the lights, switch ‘S1’ to “ON” and
test the circuit.

Use the loudness control to adjust audio level for desired loudness.

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

1
2

1

1

1

1

1

11

1

2

2

2 2

2
2

2

2

2

2

2

2

3

2

1

3

To Computer

2

1

26

The advantage of a micro-controller is that the circuit need not change to produce different audio effects.
By modification of the program, all four songs can play, one after the other. Consider the flowchart
program shown below.

In the flow chart shown on the left, each song is
played one following the other with a 5 second
delay between each of the songs. Open the
program editor and draw this flowchart. Use the
simulate button to test that the program plays
the songs and pauses for 5 seconds between
each song. If the Flowchart passes the
simulate test save it in your project folder.

Under the PICAXE® heading click on the ‘Convert Flowchart to Basic….’ command. The screen shown
above and on the right should appear.

27

Project 3: The Value of Comments and Checking Program Length

Sometimes it can be hard to remember the purpose for each step of the program. Comments (an
explanation after the apostrophe (‘) symbol) can make each line of a program much easier to understand
and remember. These comments are ignored by the computer when it downloads a program to the
micro-controller.

A label (e.g. main: in the program above) can be any word (apart from keywords such as ‘switch’), but
the label must begin with a letter. A label must also end with a colon (:). The colon ‘tells’ the program
editor that the word is a label.

The previous program uses the wait command. The commands wait and pause both create time
delays. However wait is used with whole seconds, pause can be used for shorter time delays
(measured in milliseconds or 1000th of a second).
Wait must be followed by a number between 1 and 65.
Pause must be followed by a number between 1 and 65535.

It is also a good programming
technique to use tabs (or
spaces) at the start of lines
without labels so that all the
commands are neatly aligned.
The term ‘white-space’ is used
by programmers to define tabs,
spaces and blank lines, and the
correct use of white-space can
make the program listing much
easier to read and understand.
Note these changes were made
to the previous program and are
shown here. Save program after

these changes and exit the flowchart conversion screen. On main editor screen reopen program.

28

Checking Program Length.

As programs become complex it is possible the micro-controller will run out of memory to store the
program. Check the previous program length by clicking the ‘Syntax Check’ button.

If there are no programming errors the ‘Success!’ window will open and show the amount of memory
used by the program.

To play all 4 songs and flash both lights, this program used 243 bytes out of 2048 or 11.9% of the total
memory. Remove the ‘2 Snap’ on U8 (S-Out or Pin 0) and connect the red programming wire.
Download this program. Then reconnect the ‘2 Snap’ and run the program.

29

Project 4: Other Sounds

The ‘sound’ command

 Syntax:
SOUND pin,(note,duration,note,duration...)
- Pin is a variable/constant (0-4), which specifies the i/o
pin to use.
- Note(s) are variables/constants (0-255) which specify
type and frequency.
Note 0 is silent for the duration.
Notes 1-127 are ascending tones.
Notes 128-255 are ascending white noises.
- Duration(s) are variables/constants (0-255) which
specify duration of the note (multiples of approx 10ms).
Function:
Play sound ‘beep’ (1-127) or noises (128-255).
Information:
Frequency and duration must be used in ‘pairs’ within
the command. Draw the flow chart shown here.

Use the ‘other’ button and the ‘…’ box to create the ‘inc b0’ box and the “let b0= 110” box. The
‘Sound’ command is under the ‘out’ menu. Be sure to
edit the sound command to “sound 2,(b0,1)”. Use the IF
button and the var button to create the
“b0>127” label.

Save the flowchart for your reference and convert it to a
basic program. The converted program should be similar
to the one shown on the left. This program is 21 bytes
long and looks a little confusing. Try editing the program
to appear as shown on the next page.

N
Y

30

This program is 2 bytes less and much easier to read with less jumping and only one label. Of course
the comments will help later when you edit this for different applications.

It is a good practice to build up a library of
small sub routines and then use them in
different applications when they are needed.
The more information stored in the library
the easier it will be to import and use these
routines later.

If you run a simulation of this program it will

take a long time for the b0 variable to reach 127.
Open the variable panel;
Pause the program, and double click on the b0
to change it to 115.

Restart the program and watch the b0 variable
loop between 110 and 127. In simulation the
sound command does not play the frequency.
Instead a ‘Beep’ is produced to let you know a
sound command was executed. After down
loading the real sounds will be heard.

Save program to your library then download it to
play special effect sound. Close file.

1.Pause & Start Button
2.Double Click b0
3.Edit to 115

31

Project 5: The Tune Wizard
First create the simple flowchart shown here. In many
cases the flowchart will serve to indicate a process but
the basic program will be greatly modified and not a
direct conversion of the flowchart.
Next click on the PICAXE menu and select “Convert
Flowchart to Basic…”. This will open the window shown
below. Place the curser at the beginning of line 8.

Click on the PICAXE menu again and pick
Wizards and Ring Tone Tunes as shown
below.

This will open the wizard as shown on the next page.

32

The Tune Wizard allows musical tunes to be created for the
micro-controller. Tunes can be entered manually or imported
from another source. These tunes or ring tones are also
available on the Internet, and used on some cell phones. The
tunes created by this micro-controller can only play one single
note at a time (monophonic). The micro-controller cannot play
multiple notes (polyphonic) ring tones found also on the
Internet.

Start by opening a tune that
already is on your computer.
Click on the File menu and
select ‘Open’.
Find the Program Editor
directory and open the
Christmas_1 folder as shown
here.

Open this folder (you may have to unzip – see page 34 for instructions on
extracting) and find the tune “Santa clause is coming to town” and select it.
The wizard should load all the notes as shown here.
Click the Copy button and the Copy window should open.

Click the “Yes” button in the Copy Window to put tune into
the program as shown on next page.

33

Santa clause is coming to town
was placed at the curser point
before opening the tune wizard.

Notice the tune data goes off the
visable screen and the program
has an extra tune command that
is no longer needed.

Clean up the program to look like
the one shown below using the
hints shown.

The above tune that was on one
line has been converted to three
lines by adding the underscore
character at the end of each line.
The extra tune command was
eliminated with the labels that
were not needed. Runnig syntax
check shows the tune uses 91
bytes to program! OUCH! That is
a great deal of memory for just
one tune. Play the tune by
clicking the simulate button.

Notice how the first 26 notes are identical to notes 28 to 53. Except for the last note and note 27 the tune
is the same. Redundancy in programming is a waste of memory. Change the tune section of your
program by typing in or deleting the information on your screen to match the following;

34

A syntax check will show this
section is 71 bytes, or a
savings of 20 bytes of
memory. The tune will play
correctly after down load but
may have a few pauses when
played by the simulator.
The easiest way to place a
tune into your program is to
import them from the music
folder supplied in the Program
Editor folder.

Some folders may have to be unzipped
before they can be used. Use the music
folder in the Program Editor folder as shown
on the right. The tune can then be selected
from the regular Christmas_1 or tvthemes_1
folders. First select the zip folder and use
the right mouse button to get the drop down
menu shown here. Next click on the extract
all with left mouse button to make the
regular folder that can be used by the
wizard. Tunes can now be loaded and
tested on the computer by clicking the ‘Play’
menu. The tune played may differ slightly
due to the different ways that the simulator
generates the notes. Once your tune is
complete, click the ’Copy’ button to copy the
tune command to the Windows clipboard.
The tune can then be pasted into your main
program at the curser position. Of course tunes can also be written into the wizard one note at a time.

Regular
Folde

35

Tune Wizard menu items and shortcut keys:
File

New Ctrl + N Start a new tune
Open Ctrl + O Open a previously saved tune
Save As Ctrl + S Save the current tune
Import Ring tone Open a ring tone from a text file
Export Ring tone Save tune as a ring tone text file
Export Wave Save tune as a Windows .wav sound file
Close Ctrl + X Close the Wizard

Edit
Insert Line Shift + Ins Insert a line in the tune
Delete Line Shift + Del Delete the current line
Copy BASIC Ctrl + C Copy the tune command to Windows clipboard
Copy Ring tone Copy tune as a ring tone to Windows clipboard
Paste BASIC Paste tune command into Wizard
Paste Ring Tone Ctrl + V Paste ring tone into Wizard

Play Play the current tune on the computer’s speaker
Help Open a help file.
To create a song note by note use the chart and guide shown below.

36

Project 6: Robotic Sounds
This project explains the use of the random command and labels. Build the following flowchart.

The random box can be found under the
‘other’ menu.

Use the ‘label’ button to add notes to help
explain each section of the flowchart. A good
practice is to create a word document with
both flowchart and basic program side by
side. These labels help tie the two charts
together.

When you test your flowchart with simulate,
blocks should turn red as the program loops.
A beep should be heard when the sound
block turns red. If no errors occur, save the
flowchart to your library. Use the PICAXE®
drop down menu to convert this chart to a
basic program. The result should be similar
to the one shown here.

37

The picture above shows the same basic program after changes and editing to make it more readable
and the flowchart. This picture was created by overlapping the windows in the program editor and using
the print screen <prt sc> key to place entire screen on clip board. It was then pasted into this word
document. A document similar to the picture above can be created and stored in your library for future
use.

38

RANDOM TONES USED FOR ROBOTIC SPEECH.
Project 7: SWITCHES AND DIGITAL INPUTS

Digital Inputs
A digital input can only be ‘on’ or ‘off’. Some examples of a digital inputs found in Snap Circuits® are:

• Push Button Switch Always ‘OFF’ when released

• Slide Switch Stays ‘ON or ‘OFF’ after switching.

Most switches use a metal contact that snaps into place. This action may cause the switch to bounce
and produce “switch noise” when it is closed. The program below should change the state of the LED
each time the Push Button switch is pressed. In this program output pin 4 toggles (changes state) every
time the push switch on input pin 3 is pressed.

Using the Program Editor construct the flowchart shown here. Then use the PICAXE® menu to convert it
to a program similar to the program on the right. When the program on the right was edited for clarity,
the ‘pause 100’ was added as a note. This should be made a command by removing the first apostrophe
in front of the “pause” if the switch is very noisy when pressed or released. Save chart and program.

39

Load the program into the micro-controller. As shown in the flowchart, the first two lines make up a
continuous loop. If the input is off (=0) the program just loops around between program lines numbered 7
and 8 on the left side of the program. If the switch is on (=1) the program jumps to the label called ‘BX’.
The state of output pin 4 is toggled and then the program drops into a second continuous loop that waits
for the button to be released. After the button is released the program jumps back to the beginning and
waits for the next push. Take note that only a label command follows the “then” in the “if” statement. No
other words apart from a label are allowed in this position. Keep circuit for next project.

Build this circuit

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

1

1

1

1

2

2

2

2

2
To Computer

1

2

2 2

2

2

3

1

1

1

1

2

40

PROJECT 8: COUNTING AND DISPLAYING EVENTS

Modify the previous circuit to look like the one shown below.

Create the flowchart and program shown on the next page.

Add this part

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

1

1

1
1

2

2

2

2

2
To Computer

1

2

2 2

2

2

3

1

1

1

1

2

2

41

When you download the program the DEBUG window
shown here should appear on your computer screen.
The debug window opens automatically after a run, but
can also be opened manually at any time using the
PICAXE®>Debug drop down menu. After releasing the
push button the red LED will come on while this window
is being upgraded. The variable b1 is increased each
time the switch is pressed and the red LED is off.

debug
Syntax:
DEBUG {var}
- Var is an optional variable value (e.g. b1).
Function:
Display variable information on computer in Debug Window
The debug command uploads the current variable values for all the
variables via the download cable to the computer screen. This enables
the computer screen to display all the variable values in the micro-
controller for debugging purposes.
Note that debug acts on ‘B.0 / output 0’. Therefore programs that use
output 0 may corrupt the data condition. In this case it is recommended
to use the following structure before a debug command.
low B.0 ‘ reset B.0 to correct condition
pause 500 ‘ wait a while
debug ‘ display values on computer screen
Note that the debug command uploads a large amount of data and so
significantly slows down any program loop.

1. Make the flowchart shown on left.
2. Use PICAXE drop down menu to convert to basic
3. Edit program for clarity and add safety reset.
4. Go to next page for notes on running the program.

42

Switch pressed 12 times

If the switch is pressed and released quickly
while the red LED is still on, the event will be
missed. If it is only pressed and not
released, then the event will be captured.

Notice that the b1 variable value is shown in
decimal (12), hexadecimal ($0C), and binary
(%00001100). For now the decimal output
will be all we need. Also the b1 variable is
the high byte of W0, therefore W0 will
increase by 256 every time b1 increases.
For more information on this use the help file
provided in the program editor.

Since the green LED is only ON during odd
values of b1, the light should have been lit
during values 1,3,5,7,9, and 11. The light
has been turned on 6 times, off 6 times, and

is presently off. Although we are using a light, the event could have been a switch to open a door, turn
on a motor, start an oven, or any other event that would need monitoring. The Debug window is not very
user friendly but there is another command ‘sertxd’ that can improve monitoring.

The same circuit will be used in the next project.

43

PROJECT 9 - Using Serial Terminal with Sertxd

The sertxd command sends a user defined serial string to the computer (at baud rate 4800). This can be
displayed by the included Serial Terminal function under the PICAXE®>Terminal drop down menu. The
Serial Terminal can also be automatically opened every time a download takes place by checking the
“Open After Download” box in the View>Options>Editor drop down menu.

No flow chart is needed in this project since we are only changing the ‘debug’ command to the ‘sertxd’
command. Open project 8 basic program in the editor and change it to the following.

All text must be placed in
quotation marks and
should appear in red
(default color, but may be
changed in program editor
options.)
10 = line feed (LF)
13 = carriage return (CR)

Variables need the # sign
in front of them and will be
displayed in purple.

To open the Terminal window use the PICAXE® drop down terminal or press F8 function key. The
terminal window shown on the next page will open.

44

Each time used, go to Options and set up as shown here;

Make sure the Baud Rate is set to 4800.

Each time the S2 pushbutton is pressed
the micro-controller records the event
and then transmits the message shown
on the Serial Terminal.

Notice how much faster this message
transmits compared to the debug
information. Try and press the pushbutton fast enough to
miss an event. To make the transmission even faster, shorten
the data to something like “S1= ”, #b1, “ times”, 13, 10.
The first line will say “S1=0 times.” if the micro is turned off
and back on again. The second line in the program will then
be transmitted after the switch is pressed and will say “S1=1
times.”.

Data can also be stored and not transmitted until required or
asked for by main computer.

The next project will use the terminal to send information to
the micro-controller, process the information, and produce an
output or result of the input.

45

PROJECT 10 - Using Serout, Serrxd, & Terminal Window

Build the circuit shown here. Place D2 over yellow lead and 2 snap as shown.

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

1

1

1

1

2

2

2

2

To Computer

1

2

2

2

2

2

3

1

1

1

1

22

2

1

2

2

1
2

3

2

46

Open the program editor and make the following flowchart.

Save flowchart and then use picaxe menu to convert flowchart to Basic and edit as shown on next page.

47

Save program then load the program into the micro-controller. Depending on your option settings the
terminal window may open after download. If not open the terminal window (F8). Turn the micro-
controller on and the message “ Enter Song Number and Click Send “ should appear in the terminal
window. Enter the song numbers 1-4 and click the Send button. The message “Press Pushbutton to
hear Song” will appear in the Terminal Window. Press the pushbutton on the snap circuit board and the
song you picked should play.

48

PROJECT 11 – Adding Modifications

In the previous project a number
greater than 4 would produce an error
message. The songs were
programmed as follows;
1. Happy Birthday
2. Jingle Bells
3. Silent Night
4. Rudolph the red nose reindeer

Let’s modify the program so a small
or capitol first letter of the song will
also play that song.

On the left you can see the case
equal sign has been removed and a
list of inputs has been added.

What happens when a wrong input is entered? Try making your own sound for an error.

49

PROJECT 12 – THE DC MOTOR/GENERATOR

Brushes

Because DC motors use brushes and act as generators they will produce voltages that interfere with the
micro-controller program. The DC motor provided with your XP Snap Circuits® parts was modified to
reduce this problem. The motor number should be MX and the motor should have 3 capacitors inside
the case. The following circuit will test the program while motor is running with and without a load.

The following symbol is used to represent the DC Motor. Pay attention to the “+” sign since it will
determine the direction of rotation when power is applied.

Build the circuit shown on the next page and open the
program editor to make the flow chart that follows.

Convert flow chart to the basic program shown. Use only fresh alkaline batteries in this project.

A simple DC electric motor. When the coil is powered,
a magnetic field is generated around the armature.
The left side of the armature is pushed away from the
left magnet and drawn toward the right, causing
rotation.

The armature
continues to
rotate.

When the armature becomes horizontally
aligned, the commutator reverses the
direction of current through the coil,
reversing the magnetic field. The process
then repeats.

The information shown here was reproduced from the web site;
http://en.wikipedia.org/wiki/Brushed DC Electric Motor#Simple Two Pole DC Motor

M1

50

Motor Test Circuit

Download and run program with load (Fan) and without load. Time should be 10 seconds on each run. If
program stops before 10 seconds check batteries. Always use fresh alkaline batteries.

Place C2 as shown by arrows to help remove motor noise.

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

1

1

1 1

2

2

2

To Computer
1

2

2

2

2

1

1

2

2

+ sign here!

1

Fan blade used as load for motor

2 +

3

51

PROJECT 13 – THE FLYING SAUCER
Build the following Snap Circuit® … note the “+” on the motor.

SECTION 3: PROGRAMMING FOR SNAP CIRCUITS®

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

1

1

1

1

2

2 2

To Computer

1

2

2

2

2

1

1

2

1

2

2

1

22

2

3

2

+ sign here!

2

1

11

2

2

2

3

3

3

1 +

Motor (M1)

52

Build or download
the flowchart on
the left. Use the
PICAXE menu to
convert to the
program below
and modify as
shown.

After conversion
the baud rate was
changed from
N2400 to N4800.
All other baud
rates were also
changed to
N4800.
Labels were also

changed after conversion.
Program the micro-controller and use F8
key to open terminal and use launch pad to
send flying propeller to different heights.
Enter 05 for .5 seconds of motor spin. And
45 for 4.5 seconds of motor spin. The longer
the motor spins the higher the fan will fly.
Go must be entered after the time to launch
the fan. A warning sound will play before
each launch.

53

PROJECT 14 – Analogue Sensors & Analogue to Digital Conversion (adc)

Analogue Sensors:
An analogue sensor measures continuous signals such as light, sound level, position, or voltage.
Common examples of analogue sensors are:
• Variable Resistor (RV)

• The “Photo Resistor” (RP) or “Light Dependant Resistor” (LDR)

• Microphone (X1)

The variable resistor provides a varying voltage dependent
on the center arm position. A voltage signal from 0 to 4.5
volts can be placed on pin 1 by adjusting the slider. The
micro-controller converts this analog input into a digital
number that can be represented by a decimal number in the
range 0 to 255 (8 bits) or 0 to 1023 (10 bits).

The photo resistor or light dependent resistor provides a
varying voltage dependent on the amount of light. A voltage
signal that changes with the intensity of light can be placed
on a microchip input by using the photo resistor. The micro-
controller converts this analog input into a number that
represents the amount of light on the resistor.

The microphone provides a varying voltage dependent on the amount
of sound present. A voltage signal that changes with the intensity of
sound can be placed on a microchip input by using the microphone.
The micro-controller converts this analog input into a number that
represents the amount of sound present.

54

readadc
Syntax:
READADC channel,variable
- channel is a variable or a constant that sets the input pin (1,2,or 4)
- variable is the name of the variable that holds the converted data.

Function:
Read the ADC channel (8 bit resolution) contents into variable.

Information:
The readadc command is used to read the analogue value from the micro-controller input pins 1, 2, or 4.
The readadc command converts this value to an 8-bit variable. An 8-bit resolution analogue input will
provide 256 different analogue readings (0 to 255) over the full voltage range (e.g. 0 to 4.5V). Note that
not all inputs have internal ADC capability. Use the readadc10 command to read the full 10-bit value.

Convert to Basic,
Program:
main:

 readadc 1, b0
 w1=b0*4
 high 4
 pause w1
 low 4
 pause w1
 goto main

Enter the flow chart shown here into the program editor then build the circuit
shown on the next page.

55

Download program and adjust RV for LED blinking rate.

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

To Computer

1

1

1

2

2

2

1

2

2

2

1

1

1

2

1

1

2

2

2

1

56

Edit the previous program to use 10-bit accuracy as shown here.
readadc10
Syntax:
READADC10 channel,wordvariable
- channel is a variable or a constant specifying the input pin (1, 2, or 4)
- wordvariable is the name of the wordvariable that holds the converted data.
Function:
Read the ADC channel (10 bit resolution,
0 to 1023) contents into a wordvariable.
Information:
The readadc10 command is used to read
the analogue value into the micro-
controller with 10-bit accuracy. Since the
result is a 10-bit number, a wordvariable
must be used. Note that only input pins 1,
2, or 4 have internal ADC functionality.

Download this new program and note the difference in program length and functionality.

In some cases the 8 bit resolution is adequate to do the job, but when a finer resolution is required, use
the readadc10 function.

8 Bit Conversion Program
18 bytes
Delay between LED flashing increments by 4,
for example;
0,4,8,12,16, ……..,1012,1016,1020

10 Bit Conversion Program
13 bytes
Delay between LED flashing increments by 1,
for example;
0,1,2,3,4,5,6, …… 1021,1022,1023

57

PROJECT 15 – Auto Calibrating Digital Voltmeter

The Snap Circuit® shown above uses the base-emitter junction of transistor Q2 as a reference and
calibrates the internal A to D for correct voltage readings. This self-calibration technique eliminates the
error that would occur as batteries discharge. It also eliminates A to D differences from circuit to circuit.
After building this circuit, use the flow chart and download the program shown on the next page. Open
the terminal window by pressing F8 or using the drop down under the PICAXE® menu. Adjust the RV
slider for different voltages and press the S2 pushbutton to get a reading. When the slider is all the way
up, the voltage will equal the battery voltage.

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

To Computer

1

1

1

2

2

2

1

2

2

2

1

1

1

2
2

2

21

1

2

2

1

3 2

1

58

Voltmeter Flowchart;

In the Auto-Calibrate section
the base-emitter voltage on
Q2 is read on pin 2 of the
micro-controller. Variable w6
is then adjusted for the
correct reading. This is only
calculated once each time
the program is started.

The RV voltages are then
read on pin 1 of the micro-
controller and calculated
using variable w6.

The digital number is
formatted to read as a
decimal and sent to the
terminal display.

The process will repeat after
the pushbutton is pressed
and released.

Since the “if” box in the flow chart does not support word variables, b11 was used with a note to make it
“w2” after converting to basic. The number “74” in the “if” box is a guess at the base-emitter voltage (.74
volts) and can be changed to the actual voltage measured from base to ground when circuit is active.
After converting and editing, the basic program should read as shown on next page.

Auto-Calibrate Section

59

Voltmeter Program;

Make sure baud rate is at 4800 when using terminal window.

The variable w5 stores the reading between 0000 and 1023 that represents the reference voltage. If the
battery voltage equals 4.5 volts and the reference voltage equals .74 volts the w5 variable should read
(.74/4.5)x1023 or 168 (decimals not allowed). The highest number the micro-controller can use
mathematically is 65,335. If the highest number for w5 is 1023, multiplying by 60 will not exceed this limit
(1023x60=61,380). These larger numbers allow for two decimals in the final reading. The program then
calculates the voltage at pin 2 using the number 80 for w6 as follows … w2=(w5 x 60) / w6 or VR =
(168 x 60) / 80 or 126. Since the reference voltage is 74 (or .74 volts), the variable w6 is increased by 1
and the calculation is repeated. When the 74 number is calculated the variable w6 has been found and
the micro-controller uses the 1 pin to measure voltages.

By comparing the input voltages to a known reference many undesired variables can be eliminated.

60

PROJECT 16 – Battery Tester (Batteries under 4 volts)

The Snap Circuit® shown above uses the voltmeter program to check batteries up to 4 volts. An error
message is added for voltages over 4 volts. Hold the battery to be tested in the position shown here,
then press the S2 pushbutton to get a reading. Make sure the bottom of the red snap on the wire
touches the + terminal of the battery, and the other side of the battery is pressed onto the ground snap.
The battery will be loaded at 10 milliamps per volt during the test.

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

Over Voltage Check

To Computer

1

1

1

2

2

2

1

2

2

2

1

1

1

2
2

2

21

1

2

2

1

3

2
1

12

61

Battery Tester Program;

Modify the voltmeter program in project 15 to be as shown above. This program adds an error message
if the battery voltage being checked gets close to or greater than the voltage level of the micro-controller.
If fresh batteries are installed in the Snap Circuit® battery holder, the battery checker circuit can be used
to check the voltage on any battery up to 4.0 volts.

62

Project 17, The Photo Resistor (RP) or Light Dependent Resistor

RP is an example of an analogue sensor that drops from a very high resistance to a low resistance
as light is increased. It is connected between the micro-controller input pin 2 and ground. A 100k
resistor from ground to pin 2 allows the voltage on pin 2 to fall when it is dark and rise when there is light
on RP. Dark should be close to 0 and bright should be close to 256. Build the snap circuit shown here.

Next page shows program and flowchart.

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

To Computer

1

1

2

2

2

1

2

2

2

1

1

1

2

1
1

2

2

63

Draw the flowchart at the left and use the PICAXE® drop down
menu to convert the flowchart to the basic program shown below.
Download the program into the micro-controller, clear the message
window, and press f8 button to open the terminal window.

Change from N2400 to N4800

By placing the Snap Circuit® in normal room light you
should get readings similar to the ones shown here.

Normal room light.

Hand over the RP sensor (Dark).

Flashlight onto RP sensor (Bright).

Normal room light.

64

Project 18, Introduction to Data Loggers.

Technically speaking, a data logger is any device that can be used to store data. This includes many
data acquisition devices such as plug-in boards or serial communication systems, which use a computer
as a real time data recording system. However, most instrument manufacturers consider a data logger a
stand alone device that can read various types of electrical signals and store the data in internal memory
for later download to a computer.
The advantage of data loggers is that they can operate independently of a computer, unlike many other
types of data acquisition devices. Data loggers are available in various shapes and sizes. The range
includes simple economical single channel fixed function loggers to more powerful programmable
devices capable of handling hundreds of inputs. The Snap Circuit below is a single channel fixed light
intensity logger. Build this circuit.

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

To Computer

1

1

2

2

2

1

2

2

2

1

1

1

2

1
1

2

2

2

2

1

2

65

Create the following flowchart:

In the above flowchart the data is stored in registers 28 to 127 with the “poke” command and retrieved
by using a subroutine called ddump with the “peek” command. The “gosub” command only stops the
time keeping process to retrieve the data and send it to the terminal. Time keeping is then resumed
where it left off by the return command at the end of the ddump subroutine. Use the PICAXE® drop down
menu and convert the flow chart to a program similar to the one shown on the next page. Be sure to add
your own notes and change labels to make your program easy to understand when you revisit this
program at a later date.

Must enter first before making the
gosub command.

66

Download the above program into the Snap Circuit Project 18 Light Intensity Logger. Press the F8 key to
open the terminal window on your display. Press and hold the S2 switch until data starts dumping into
the terminal window then release switch. The window should display data similar to the picture above
and on the right.
There will only be one reading since the light sensor data logger was just turned on. The rest of the data
should be zero. It will take approximately one hour before the second reading is taken. Placing this
circuit near a window for a few days will record the light levels for that area every hour for 99 hours. To
make the readings faster, change the program as shown in the red boxes above and repeat the process.
The next page shows program with notes for future reference.

Make these equal to 2 and the wait = 1 for
a reading approximately every 5 seconds.

Changed to 4800 after conversion.

67

By moving groups around some labels can be removed and program is easier to read. Notes are
important to keep a clear picture of each lines purpose and changes like N2400 changed to N4800 five
times in program.

68

Project 19, Green Power Meter or An Energy Cost Data Logger.
A data logger can be used to store data on how much electricity is being used by a device. For example,
the light sensor is placed by a lamp in a room. When the lamp is turned on the micro-controller records
the time. When the light is turned off, the time elapsed is calculated and stored. The time on is then used
to calculate the kilowatt hours of energy used and the cost based on the current price of electricity. Total
cost per day is then stored for displaying when requested. PICAXE® timing is approximate & can vary by
±1%. Consider the flow chart below.

This section gathers and stores data. This section calculates and displays cost.

69

Since the flow chart editor will not allow a decimal, write the word “decimal” instead and convert it to a
decimal point after transforming the flow chart to a basic program. The ‘¢’ symbol can be entered by
holding down the <alt> key and entering 0162 on the number pad. Open the program editor and enter
the flowchart as shown above. Be sure to save it before converting to basic. After converting to basic
your program should be similar to the one shown here. Program in Basic for Green Power Meter.

setint
Syntax:
SETINT OFF
SETINT input ,mask
- input is a variable/constant (0-255) which specifies input condition.
- mask is variable/constant (0-255) which specifies the mask
Function:
Interrupt on a certain inputs condition.
Information:
The setint command causes a polled interrupt on a certain input pin / flags
condition.
A polled interrupt is a quicker way of reacting to a particular input combination.
It is the only type of interrupt available in the PICAXE system. The inputs port is
checked between execution of each command line in the program, between each
note of a tune command, and continuously during any pause command. If the
particular inputs condition is true, a ‘gosub’ to the interrupt sub-procedure is
executed immediately. When the sub-procedure has been carried out, program
execution continues from the main program.
The interrupt inputs condition is any pattern of ‘0’s and ‘1’s on the input port,
masked by the byte ‘mask’. Therefore any bits masked by a ‘0’ in byte mask will be
ignored.
e.g.
to interrupt on input 3, high only in binary format
setint %00001000,%00001000 (In decimal = 8,8)

high only Input 3 Input 2 Input 1 Input 0

to interrupt on input 1 low only
setint %00000000,%00000010 (In decimal = 0,2)
to interrupt on input 0 high, input 1 high and input 2 low
setint % 0 0 0 0 0 0 1 1 , % 0 0 0 0 0 1 1 1 (In decimal = 3,7)

 128 64 32 16 8 4 2 1 or 2+1=3 4+2+1=7
add position values that are ones to convert from binary to decimal.

Change the word “decimal” to a “.” before downloading.

Lamp Wattage

Cost per
kilowatt hour to
nearest penny.

70

The program will take 24 hours before it records the first day’s cost. To speed up program for testing
purposes, change the second pause from 59940 to 1. After testing replace original value.
Build the Green Power Meter Circuit shown here.

 Flashes once each minute when it records lamp as on. No Flash if lamp off.

To Computer

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10
1

1

2

2

1

2

2

2

1

1

1

2

1

12 2

2

2

2

2

1

2

2

1

2

71

To shield the photo resistor RP from daylight and other light sources you should take a
tube from a roll of paper towels and cover one end with a piece of paper as shown here.
Punch a pencil size hole in the paper and cut the other end of the tube so it fits over the
photo resistor RP in the circuit above. Aim the hole in the tube at the lamp being
measured so only light from that lamp hits the photo resistor.
To test the Green Power Meter (GPM) change the second pause in the program from

59940 to 1 and download into the
Snap Circuit® on the previous
page. After removing successful
download window, quickly open the
terminal by pressing <F8> key.
Restart the GPM and your terminal
window should display the ‘Wattage
= 100’ message.

The red LED should be flashing
very fast if enough light is present
to trigger the record part of the
program. Place your hand over the
photo resistor and the flashing
should stop. Press the S2
pushbutton to see recorded data. It
will take more than one minute to
emulate one day of recording with
light on.

29 Days recorded, out of 50
possible before memory is full.
For 29 Days Recorded the lamp at
9 cents per kilowatt hour, would
have cost the user $6.26.

72

Be sure to change the wattage setting to the value of the lamp you will test and the price per kilowatt
hour to the nearest penny rate on your electric bill. Replace original pause settings and download the
program. Remove computer leads and install 10K resistor. Place it under the light to be tested. Make
sure the LED flashes once every minute the lamp is on, and does not flash when lamp is off. Wait a
month to get a good reading on the cost of normal use of the lamp. Although the GPM can only measure
up to 255 watts directly, any device tied to a light source can be calculated. For example, a 1200 watt
heater with a light would cost 12 times the number calculated above or 12 x $6.26 = $75.12 for 29 days.

PROJECT 20, Audio Amplifier and the Microphone (X1)

Build the Snap Circuit shown below. For those familiar with electronic circuits and
schematics a schematic drawing of this circuit is also included.

Schematic Drawing

R2 1K

R4

R5 100K

C4 100uf

X1

Q2
NPN

B3
4.5V

S1 TO MICROPHONE INPUT ON COMPUTER

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

2

1

2

1

2

2

1

2

TO COMPUTER
Microphone Input

1

3

1

2

2

3

MICROPHONE CABLE

1

1

2

2

73

Make sure the computer speakers are turned on and the volume or loudness control is not at zero.
Also make sure the microphone input is on by checking the controls as shown below.
Go to control panel and double click the “Sounds and Audio Devices” icon. In the panel that opens, click
the “Advanced” bar under the device volume section to open the window below. {May appear different}
Click on the “options” menu and check the “Advanced” section to open these.

Click on “options” again, and then “properties” to open this window.
Make sure the Microphone & Volume Control boxes are checked. Click OK.

For best sensitivity, click on the advanced button under the microphone column and make sure the
“Microphone Boost” box is checked in the window that opens. Not all versions of windows will have
these “Advanced” buttons and windows may appear different. Turn S1 switch to on and you should be
able to hear amplified sounds from the microphone. Test by blowing on the microphone. If feedback
occurs, reduce the speaker volume or the microphone input setting. Keep this circuit for the next project.

74

Project 21, Audacity®
Run the installer program “audacity®-win-1.2.6.exe” from the Elenco® disc.
Follow the instructions to install the program. After installation run the program and a window similar to
the one below should open;

 Stop Button

 Use the “Help” menu to learn the power of Audacity®.

When ready, use the Snap Circuit® from project 20 to record the words “yes” & “no” or the
numbers 0 through 9.

Click the record button and speak clearly toward the microphone at a distance of 12 inches.

To stop recording, click the stop button.

A recorded “yes” & “no” is shown on the next page.

audacity-win-1.2.6.exe

SECTION 4: AUDACITY® & SOUND

75

An Audacity® recording of the words “yes” and “no”.

In speech recognition programs, computers analyze the digital data from words and use the common
points to determine the word being spoken. The next project will use the sound of clapping to control an
LED.

76

Project 22, Investigating Sound of Clapping.
Use previous setup to record the sound of two claps. Try recording two claps with different delays
between claps. The picture below shows different clap groups highlighted by different colors.

Peaks reach both +1 and –1 levels, then decay to a level less than .1 within .2 seconds.

.4 seconds .2 seconds .6 seconds .8 seconds 1.1 seconds

77

A single clap from the previous page is shown here.

 < ±.1

 .2 seconds or 200 milliseconds

Amplitude window for less than 10% of a positive or a negative peak.
Expanding the area inside the yellow box will show the first few milliseconds of clap. This area could be
used to trigger an interrupt and start the process to analyze the sound. This area is expanded by;

1. Highlight area using this button.
2. Eliminate rest of curve using this button.
3. Expand using this button.

78

Expanded start of a clap. Data points highlighted by clicking “pencil” button.

If –1 = 0, +1 = 255, and 0.0 = 127 then the dots below the –0.3 red line and the dots above the 0.3 red
line show digital data points for loud sharp sounds that are less than 88 or greater than 166. This data
can be used to detect the start of a clap sound.
After .25 seconds or 250 milliseconds all the data should be between the two center purple lines as
shown by the dots at the beginning of the curve. This data can be used to detect the end of a clap
sound. Use the Audacity® program and the circuit from project 20 to verify these facts.

79

Project 23, The Clap-Data Program
Consider the flow chart shown here as one method of recording and displaying data from the sound of
two claps within a 2.5 second window.

Converting the above flowchart to a basic program and adding notes can produce the Basic program
shown on the next page.

80

81

Build the Snap Circuit® shown on the next two pages and download the above program into the micro-
processor.

 Clap data taking circuit levels 1 & 2.

To Computer

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

1

1

2

2

2

1

2

2

2

1

1

1

2

1

1

2

2

2

1

2

1

2

2

1

2

1

2

1

2

2

82

Finish the Snap Circuit® shown below for the clap data taking circuit levels 3 & 4.

After downloading the program, clear the download window and open the Terminal window under the
PICAXE® menu in the program editor or press F8. A quiet level will be calculated and displayed when
the green LED goes off. Every two claps should produce a stream of data that is followed by the word
“end”. Second clap should be .5 to 2.5 seconds after the first clap for best results. Data will vary from
circuit to circuit, but certain characteristics will remain the same. It is these characteristics that will be
used to control our final output.

To Computer

B

C

D

E

F

2 3 4 5 6

A

G

1 7 8 9 10

3

4 2

3

3

3

3

83

 Project 24, Analyzing Clap Data
Data shown in terminal window after four pairs of claps should be similar to this;

Clap Pair 1 ratios: 7 for first & 6 for second
Clap Pair 2 ratios: 7 for first & 12 for second {If average is less than 1, 1 is used}
Clap Pair 3 ratios: 8 for first & 5 for second
Clap Pair 4 ratios: 5 for first & 5 for second
Observing ratios lets us pick 5 as the minimum ratio for a clap sound.

Start of first clap
11
11
17
2
3
2
46/ 6 = 7

End of first clap
0
1
2
1
1
1
6 / 6 = 1

Start of 2nd clap
16
13
1
3
1
3
37 / 6 = 6

End of 2nd clap
1
0
2
2
0
1
6 / 6 = 1

Adding the levels for the
start of the second clap
yields 6 times the sum of
the data for the end of
that clap.
Remainders are dropped,
only whole numbers
used

Adding the levels for the
start of the first clap yields
7 times the sum of the data
for the end of that clap. It is
this ratio we will use to
recognize the clapping
sound.
Remainders are dropped,

l h l b d

84

Project 25, The Clap it ON, Clap it OFF Circuit

In the following flow chart the ratio of 5 is used to determine a clap sound and if two claps occur within a
2.5 second period the green LED changes state. Since there is no need to store the data and send it to
the computer, the program can be a stand alone circuit that responds to a two clap command.

The beginning of the above flow chart the 10-second delay is necessary in order to allow all the circuit
transients to settle and come to their operating levels. A green light indicates this process is running.

85

When the light goes
out the circuit is
reading to use. A
proper two-clap sound
should toggle the
green LED on or off.
After conversion to
Basic and cleanup the
program should look
like the one shown
here.

Notes added will help
when viewed at a later
date.

All flow charts and
basic programs are on
disc provided.

86

Elenco® Electronics Inc.

150 Carpenter Ave
Wheeling, IL 60090

(847) 541-3800
www.elenco.com

Copyright © 2012 by Elenco® Electronics Inc. All rights reserved. No part of this book shall be reproduced without written permission. PD031811

