O
D
P4
=
L

™

Instruction manual

® Electronics Inc.

Elenco

Rev B

Index to Pages

2. About This Manual

3. SECTION 1: ELECTRONIC COMPONENTS

4-6 Connectors, Resistors, Switches, Diodes, Motors, Speakers, Transistors, and U8 the Integrated Circuit Module
7 What is a Micro-Controller?

8 SECTION 2: PROGRAMMING & SNAP CIRCUIT® BASICS

8-10 Installing Software and Programming Cable

11-14 Building the Micro-Controller Circuit

15-19 PROJECT 1: Flow Chart Programming and Snap Circuit Basics
20-23 Testing A Flowchart Program

24 PROJECT 2: Adding Amplifier and Loudness Control

26 PROJECT 3: Comments and Program Length

30 PROJECT 4: Other Sounds

32 PROJECT 5: The Tune Wizard

35 PROJECT 6: Robotic Sounds

37 PROJECT 7: Switches and Digital Inputs

39 PROJECT 8: Counting and Displaying Events

42 PROJECT 9: Using Serial Terminal

44 PROJECT 10: Using Serout, Serin, and Terminal Window

47 PROJECT 11: Checking for Errors

48 PROJECT 12: The DC Motor/Generator

50 SECTION 3: PROGRAMMING FOR SNAP CIRCUITS®

50 PROJECT 13: The Flying Saucer

52 PROJECT 14: Analogue Sensors and Analog to Digital Conversion (adc)
56 PROJECT 15: Auto Calibrating Digital Voltmeter

59 PROJECT 16: Battery Tester

61 PROJECT 17: The Photo Resistor

63 PROJECT 18: Introduction to Data Loggers

66 PROJECT 19: Green Power Meter or An Energy Cost Data Logger
70 PROJECT 20: Audio Amplifier and Microphone

72 SECTION 4: AUDACITY® & SOUND CIRCUITS

72 PROJECT 21: Audacity®

74 PROJECT 22: Investigating Sound of Clapping

77 PROJECT 23: The Clap-Data Program

80 PROJECT 24: Analyzing Clap Data

82 PROJECT 25: The Clap it ON, Clap it OFF Circuit

* Audacity is a registered trademark of Dominic M Mazzoni, South Pasadena, CA

About this manual

The Snap Circuit Micro-Controller manual is designed to quickly move the user into the world of micro-
controllers without any heavy mathematics or science background. All that is required is a computer with
a Windows® operating system and the Elenco® SCM400 starter kit.
The manual is divided into four separate sections:

Section 1 - Getting Started (Electronic Components)

Section 2 — Flow chart programming and Snap Circuit® basics

Section 3 - Programming for Snap Circuits®.

Section 4 — Audacity® and Sound Circuits.

The first section provides general information for getting started with Snap Circuits® and the program
editor. No prior understanding of micro-controllers is required. Most electronic components will be
explained using comparisons to easy to understand water pipe systems. In Section 2, a series of easy to
follow tutorials introduce the main features of both Flow Chart programming and the Snap Circuit®
system. In Section 3, the programming is extended to control some clever and practical Snap Circuits®.
In Section 4 an audio recording and editing program is introduced and used to gather data. This data is
then used to control a light with the sound of a clap. The software used for programming the micro-
controller is called the ‘Programming Editor’. The software and the programs that match this manual may
be found at Elenco.com/downloads

For more specific information on flow chart programming, syntax and examples of each BASIC
Command please see sections 1 & 2 ‘Getting Started & BASIC Commands’ located in the help file of the
programming editor. For more advanced micro-controller circuits that do not use Snap Circuits®, and
example programs, please see ‘Interfacing Circuits’ in the help file of the programming editor. If you
have a question about any command please post a question on the forum at www.picaxe.co.uk

For more information on Snap Circuits® or electronic components please run the water pipe analogies
included on the Snap Circuits® CD or visit the websites at www.elenco.com.

SECTION 1: ELECTRONIC COMPONENTS

@© Single Spacer (4)
2 Space connector (9)
3 Space Connector (4)

(°)

o

()

©

)

o

®

©

* 4 Space Connector (3)
5 Space Connector (1)

6 Space Connector (1)

7 Space Connector (1)

Resistor 1000
Ohms or 1k

Ohms (2) Ohms (2)
R2 R4

LED Color Red (1)

D1 NI~

Resistor 10,000

Ohms or 10k Resistor 100 Ohms or 100k

Ohms (1) Ohms (1)
R1 RS
[] [EUOKQ' R!SISTO]

LED Color Green (1)

7
s e

NPN Transistor (2)

=0
PHOTO RESISTO

1]
—w
—n

.

Light Dependent
Resistor (1)

!

8

A\

s
\
A
S

O

J

~
/
~
/

Ol
O

)

100 uF

100uF Capaator (1)

C2

O

@

.\
J
D)

N

O

O)
W/

s

\ : /
C

W/

: ~

\/ :)

\/
~
oy
~

QO

e

Resistor 100,000

Slide Switch (1)

4.5 Volt Battery (1)

-

OF=2gy=—0

Pushbutton
Switch (1)

+
[ROPHON’ X1

microphone (1)

CSP D
Ohm speaker (1)

01 uF

.1uF Capacitor (1)

)
A\
)
v

O

)

QO

~N
Y

N
o

s
U/
e
W/

O

oee

e
O
O

./
~
)
~

'SNAP CIRCUITS)

QO

(

QO
QO

Y

)
\/
)
hi

O

.\
A\
O
v

Ve

SNAP-MICRO1

Jumper Wires (2) Black & Red

.. [MOTOR (’lﬂ’, + j

0

DC Motor (1)

Fan Blade (1)

D) O}
J

@

OO0
Ou OC
@
e

\/
O D
Q0

¢

Q
\QO

Gepyright 2008 by Elenca Elscirenics ke
Al Fights Resenved

Elenco® CD Rev B (1)

Computer Interface Cable (1)

USB Programming
Cable (1)

© ©
GND

S-In +
u21

©4 . S%t@

3 2

©

8 Pin Socket U21 with

® 1@ micro installed (1)

ELECTRONIC COMPONENTS

First, consider voltage to be pressure on electrons to make them move in a wire. This is similar to water
pressure in a pipe to make the water move. For voltage we will use the symbol VvV’ (volts).

Next consider the movement of electrons in a wire to be similar to the water moving in a water pipe. This
movement of electrons (or water) is called current and is represented by the symbol ‘I' and measured in
units called amperes or amps.

Finally, let the friction of the wire (or water pipe) that tries to stop the current from flowing be called
resistance. For resistance we will use the letter ‘R’ or the Greek symbol Q (Ohm).

The ‘# Space Connector’ is really a wire or water pipe with close to zero resistance to
current flow. The # represents the number of bumps on the grid will be shorted. For example, a ‘3 Space
Connector’ covers 2 spaces and shorts (allows current to flow easily between) 3 bumps.

The Resistor limits the flow of current. The more resistance, the less current will flow at

the same pressure applied. For example, if a 10,000 Ohm or 10k Q resistor is placed across a 4.5 volt
battery less current will flow through it than if a 1k Q was placed across the same battery. To help
understand this principal, consider the following;

A water pipe filled with rocks would offer some
resistance to the flow of water.

High

Pressure

A water pipe filled with sand would offer a greater

resistance to the water flow. \

Water pipes filled only with water provide almost zero

resistance to the flow of water.
Most of the current will take the M

of least resistance as shown here.

Parallel Resistors

Low
. . Pressure
High Resistance

A

Copyright @ 2004 SeymourSoft Inc.

The Variable Resistor
of the resistor to the
between the wiper and

‘RV’ is really a resistor with a wiper arm that can slide from one side
other side. As the wiper moves toward either end, the resistance
that end is reduced.

The Switch ‘S1’ is equivalent to a zero Ohm resistor when it is ON, and an infinite Ohm

resistor when it is OFF.

The LED (Light Emitting Diode) ‘D1’ Is similar to a check valve in series with a light. Most
diodes act similar to water pipe check valves and must be installed in the correct direction for current to

flow.

Consider the water pipe check valve shown on
the right. When the piston pushes water into
the pipe the check valve opens and water
flows as shown. When the piston tries to suck
water from the pipe the check valve closes and
no current flows through the check valve.

Light is produced whenever current flows
through the LED check valve. The stronger the
current in the LED, the brighter the light. If the
LED is installed with the + symbol connected
to the negative voltage or ground the current
cannot flow and the LED will be off.

MOTOR +
The DC Motor [(W) j

depends on the polarity of the voltage.

Anode ™|
<[>\ THE DIODE

Maximum Current
Mazximum Pressure

Input

oums

Zero Pressure
Zero Current

Maximum Negative
Pressure (Suction)

Copyright @ 2004 SeymourSoft Ine. No Cur‘rent, Gate is Closed

converts a DC voltage to a rotation. The direction of the rotation

Build the circuit shown below. Snap Circuit® Boards are built one level at a time. The base grid is
considered to be level 0. Parts placed directly on the base grid are said to be on level 1 and will have a
small black 1 next to the part. Parts placed on level 1 parts are said to be on level 2 and will have a
small black 2 next to the part. This process is continued until all parts are installed.

O)
A\

O
\/

O

_<
O

(d
The SPEAKER ‘SP’ tuaIIy an 8 Q speaker

that can be used to produce audible tones.

The NPN Transistor ‘Q2’ is a device that amplifies current. For
example, a small current from base to emitter will produce a

much larger current from collector to emitter. The NPN

connections are labeled collector, base, and emitter as shown
here.

COLLECTOR

BASE

EMITTER

1.

D WD D D A D D U O R

4.

Similar device in OF BASE CURRENT WILL PRODUCE
water pipe Systém | Tueramo ormeseTwo

Turn Switch S1 to ON and the LED should
glow red. Turn S1 to OFF.

Turn D1 around so the + is on the switch
side and repeat step 1. In this case the
LED should be dark and never glow. Turn
Switch S1 to OFF and replace LED ‘D1’ in
the original position.

. Replace the 1k Q resistor ‘R2’ with a

100 Q resistor ‘R1’. The LED ‘D1’ should
be brighter when Switch ‘S1’ is turned ON.
Lower resistance produces more current,
and more current makes LED’s glow
brighter.

Use this circuit to test LED’s, resistors, and
switches S1 and S2.

High Pressure
The NPN Transistor

Zero or Low
Pressure

'WHEN BASE CURRENT EQUALS
ZERO, COLLECTOR CURRENT
EQUALS ZFRO. A SMALL AMOUNT

ALARGE COLLECTOR CURRENT.

CURRENTS IS CALLED THE
TRANSISTOR'S BETA. Copyright © 2004 SeymourSoft Inc

All rights reserved.

©

.

1Lt

S

&

Y

The U21 Snap Circuit® module is designed to accept any 8 pin
integrated circuit. If not already installed, remove the 8 pin integrated
circuit (micro-controller chip) from its package and carefully install it as
shown here

Make sure the dot on the integrated circuit and the red dot on the socket
are in the same corner.

The blue numbers printed on the socket platform are the pin numbers
used by the programming editor. In all situations we will use these
numbers to reference the output or input pin.

WHAT IS A MICRO-CONTROLLER?

A micro-controller is a ‘computer-on-a-chip’. It's an integrated circuit that contains memory, logic,
processing, and input/output circuitry. Micro-controllers are programmed with specific instructions to
control many different devices. Once programmed the micro-controller is built into a product to make the

product more intelligent and easier to use.

For example, a microwave oven uses a single micro-controller to process information
from the keypad, display user information on a display, and control the turntable motor,

light, bell and cooking time.

One micro-controller can often replace a number of separate parts, or even complete electronic circuits.
Applications that use micro-controllers include household appliances, alarm
systems, medical equipment, vehicle subsystems, musical instruments, and
electronic instrumentation. Some modern cars contain many micro-controllers
used for engine management and remote locking.

SECTION 2: PROGRAMMING & SNAP CIRCUIT BASICS

INSTALLING SOFTWARE AND PROGRAMMING CABLE
To install the Programming Editor software you must have an internet connection. Click on the link
shown here and then follow instructions. http://www.elenco.com/downloads/SCM400dlinst.pdf

1. Follow instructions that appear to install editor.

2. Insert the USB programming cable into a USB port on your
computer. The cable will configure itself automatically. If you have
problems with configuration then contact Elenco®.

www.help@elenco.com
(note: If message appears “ looking for TTL232R-3V3” the driver is on the Elenco CD)

3. Start the Programming Editor software by clicking on the Program Editor Icon. If you get the same

version shown here the Icon will appear as shown here.
PO o

Description: PICAXE Programming Editor
Company: Revolution Education Ltd

File Version: 5.5.0.0

Date Created: 1/18/2012 10:28 AM
Size: 6.78 MB

When the program opens click the “view” menu and then the Options menu to display the Options panel
(this may also automatically appear on startup). On the ‘Mode’ tab select the 08M2 microcontroller.

" PICAXE Programming Editor

Fle Edit Simulate PICAXE ‘View Window Hslp

2| X | % | & | N
Print | Options | Syntax | Simulate | Program

~Wariables
Canstants
~Labels

~Mode
— PICAXE modes... ~ Options

PICAXE-08M 4 MHz ¥

Dy FES3
m| fornew designs

Cancsl | Aprly |

If this box is checked the “Options” menu will open every time
the program is started.

| PICAXE-08M mode PICAXE-0BM 4MHz | [‘caps Tnom [e | 4232012 | 3zapm 4

On the ‘Serial Port’ page also select the appropriate serial COM port (the port where you connected the
USB programming cable).

COM port should say “Ready to use” If you have COM port trouble see next page.

tode Seral Port Fluwchartl Languagel Colour I Editar Simulatin:ml Explnrer'

—Setial Port

COmM 12 (notawvailahle)
COM 13 (notavailable) AxEDZ? PICAXE LISE N |
COM 14 (notavailable) 1USEB Serial Fort
COM 15 [notavallahble U=E Serial Fort
COMITE Readyforuse LUSE Serial Por

(not available) often means the LUSE cable is notinserted inta

the correct socket Fetfrash

|_ show Port Help Taals...

[v" Show options on startup OK Lancel Apply

All windows may appear different depending on the contents of the file folders and the version of
windows being used. The “Options” window should remain as shown but with different COM numbers

depending on the port or plug used. If cables are move to different ports the option window may have to
be changed to match the port being used.

10

If you do not know your COM port number, you can find it by clicking “START” on main screen, then
click “Run” and type in devmgmt.msc and press enter key. The following screen should open.

5%, Device Manager

File Action View Help

- W & R
=48} YOUR COMPUTER NAME

#- iy Computer
h}J % Disk drives
@ Display adapters

< DVD/CD-ROM drives

=+ (&8 Human Interface Devices
@ IDE ATA/ATAPI controllers
& IEEE 1394 Bus host control
& :'E Imaging devices
[+ @ Keyboards

Mice and
l jters

H etwork adapters
E Ey Ports (COM & LPT)

,.—lr" Brother MFC-5840CN USB Remote Setup Port (COM4)
_ ;"' USB Serial Port (COM16) <€—
Fl % Processors
[3;] @, sound, video and game controllers
% Storage volumes

& g System devices

L Click on the “Ports (COM & LPT)” to get
the drop down menu and locate your port

number. /

r pointing devices

Universal Serial Bus controllers

11

BUILDING THE MICRO CONTROLLER CIRCUIT

1. Snap Circuit® Boards are built one level at a time. The 70 post base grid is considered level 0.

2. Parts placed directly on the base grid are said to be on level 1 and will have a small black 1 next to
the part.

3. Parts placed on level 1 parts are said to be on level 2 and will have a small black 2 next to the part.

4. The above process continues until all levels are completed.

5. Build level 1 for the Micro Controller Circuit shown here:

A ©_2 0 ® (|
45v
At |-l
B 5_ \./]
©

6. Add level two to the grid.

13

7. Connect the serial cable to the Snap Circuit® Micro as shown below. Make sure the yellow lead is
connected to pin 0O, the black ground lead is connected to battery minus, and the orange lead to S-
In. Turn switch S1 to ON.

To Computer

14

8. Using the program editor software, type in the following program:

* PICAXE Programming Editor

File Edit Simulate PICAXE VWiew Window Help
D& 2| &|X| »| €|\
Ne 5 :) You can check your
w |Flowchart| Open Save Print | Options Syptax | _Simulate | Mogram program by clicking
= the Syntax Check
button (ABC with a
: 10 B = check mark on it).
x % ﬁg“ —I I —I If Syntax is correct
1 main: high 4 A || 7 Variables | proceed to step 9.
2 pause 1000 —]| - Constants
3 low 4 i Label
4 pauwse 1000 7 7 ARRSS
5 goto main

9. Click the Program button to download the program to the hardware. If problem in programming, turn
power switch S1 off, click Program button again, and quickly turn S1 switch to on. After the download the
output LED should flash on and off every second. Congratulations! You have just programmed a micro-
controller integrated circuit to make an LED blink. Do not remove parts from the grid they will be used in
the next section. You may remove the Programming Cable now. Take note that turning the S1 switch
ON and OFF does not lose the programming. Turn the switch off to save battery power.

15

FLOW CHART PROGRAMMING AND SNAP CIRCUIT® BASICS.
PROJECT 1:

In Section 1 you built the basic Snap Circuit® board that will be used for most of the projects in this
section. It is important to have a clear road map when writing software. A Flow Chart will keep the
problems at a minimum and allow the programmer to quickly and easily add and remove sections of
programming without fatal errors. Open the programming editor and click on the New Flowchart button
shown here. Ignore upgrade box if it appears and click hide for future flowcharts.

The screen shown here will open and the Start box will be added to the grid.

" PICAXE Programming Editor - [Untitled Flowchart:1]
[Fie Edit Flowchart PICAXE View Window elp

N & || £ 7 k | &N
New |Flowchart| Open Save Print Options Syntax Simulate | Program
v 1 1
L3 ‘ L ‘ & | ©F I M V]/ % label EY Qb [delay|| [sub)| [other|
’ 1 I

il PICAXE Programming Editor - [Untitled:1]
start T F1Ie Edit Simulate PICAXE View Window Help
ol e 2| &| X
o s+ & 2 = s s + s s a s a2 s a2 s s+ & s & s s = « New |Flowchart] Open Save Print Options

O P = =TT e |
1

main: high 4
pause 1000
low 4

Syntax

A

Program

&

Simulate

pause 1000
goto main

==
[N

Ouir first flowchart project will be to play the melody to Happy Birthday with and without flashing lights.

16

PICAXE Programming Editor - [Untitled Flowchart:1]

[Fle Edit Flowchart PICAXE View Window Help
= P st x ;
D& | B2 &) % | & | N\
MNew |Flowchart| Open Save Print Options Synta d Program

e

" PICAXE Programming Editor - [Untitled Flowchart:2]

[if Fle Edit Flowchart PICAXE View Window Help

> - % 2) x < \
D& 2| 2| & g &
New |Flowchart| Open Save Print Options Syntax Simulate | Program

wwwwy#@fl

| e\

PICAXE Programming Editor - [Untitled Flowchart:2]

\

)) \
First click the ‘out’ button. The
menu bar will change to this
menu bar.

[if Fle Edit Flowchart PICAXE View Window Help

.—\% - K
D& | B[2] & | X| w| & |\
New |Flowchart] Open Save Print Options Syntax Simulate | Program

Click on the ‘Play’ Button and add this
L box to the chart by dragging down
using left mouse button.

551655

=20 Bl

the start as shown on next page.

17

Next, click the right mouse button to activate the select arrow ®. Select the play box and drag it to

The Play command has the following functions (Syntax)"

Function:
® PICAXE Programming Editor - [Untitled Flowchart:1] Play an internal tune on output pin 2

m File Edit Flowchart PICAXE View Window Help

N & P 2| &2 I X| | & | N PLAY tune, LED
New |Flowchart| Open Save Print | Options | Syntax | Simulate | Program The tune constant (0 - 3) Speciﬁes
N jm:gh,r j'lo:w] fpi:ns/ &w’ ,rm;my ,eer:ouy [ser:uoj prl%lgf ftu;mj jirc:mtj ; ,‘ > | \(/)Vf_llltflf;;t;)r;/e l;ﬁtﬁ:jagyas follows:
1-JingIeBeIIs
... 2 - Silent Night
.-+ 3 - Rudolph the Red Nosed Reindeer
... LED is a constant (0 -3) that specifies
. .- outputs that flash as the tune is being
e played as follows;
d ... 0-No outputs
ey [o_ ~|.[0] -..... 1-Output 0 flashes on and off
lmwmsmmo:; .2i11D 2. Output 4 flashes on and off

3 - Output 0 and 4 flash alternately
The tune and LED constants can be changed in the edit box at the bottom of the program editor
screen when the play box is active. After the tune plays, there should be a few seconds of delay and
then the tune should play again. Return to the previous menu by clicking the curved arrow button .
Now click the delay button and use the previous technique to add the wait box.

' PICAXE Programming Editor - [Untitled Flowchart:1]
ﬁFiIe Edit Flowchart PICAXE View Window Help ﬂ File Edit Flowchart PICAXE View Window Help

™ PICAXE Programming Editor - [Untitled Flowchart:1]

e r'-% =) #) b d 2 =1 F
D& 22 @ X & | N\ D& B2 @ | X| W] &N\
Mew |Flowchart] Open Save Print | Options Syntax jnulate | Program MNew |Flowchart| / Open Save Print | Options Syntax | Simulate | Program
v K| s x[o]|} |m] alc|ekE@E [v selEEmE o

18

WAIT
Function:

PICAXE Programming Editor - [Untitled Flowchart:1]

Pause for some time in whole seconds.

ﬁ File Edit Flowchart PICAXE View Window Help Syntax:

e | = y WAIT seconds

I g K 4 < g . H
L:] & | | # fﬁ? k Y _‘é’ %\ - Seconds is a constant (1-65), which
ew |Flowchart| Open Save Print | Options Syntax Simulate | Program o

specifies how many seconds to pause.
1 1 1 L .

K [pause] | [wait]| [steep]| [map]| wD Information:

PICAXE Programming Editor - [Untitled Flowchart: 1]
ﬁ File Edit Flowchart PICAXE View Window Help

This is a ‘pseudo’ command that is equivalent
to ‘pause’ times 1000, This command cannot
be used with variables and is a fixed delay
installed during programming. To change the
delay due to an input or other information,
use the Pause command.

Use the edit box at the bottom left corner of
the program editor window to change the
time to 5 seconds.

Note: The “Wait” box must be selected.

menu and select the Draw Lines tool.

Nl& 2 2] & X | & | N Next, the loop needs to be closed.
Mew F|D'.Nd:3rt Open Save Print Options Syntax Simulate | Program
N k| a | o | @ I‘I\é\l el BZ’|¢ | Click the return button to get back to the main

Sl start TN

Use the ‘Draw Lines’ tool to make the
flowchart on your program editor the same as
the one shown on the next page.

19

TESTING A FLOWCHART PROGRAM

PICAXE Programming Editor - [Untitled Flowchart:1]
File Edit Flowchart PICAXE View Window Help Before running a SimUIation for the ﬁrSt

Nl& |22 & | X| w| & | N time the program editor should be
Mew |Flawchart| OCpen Save Print | Options Syntax Simulate | Program adjusted as follows:
. . . First click View in the headings and
K ik @ ‘ g ‘ dm ‘ 4| Lael fout /| M f TFo] [delay - —) g
e L] = then select Options. When the window
P belowopens,selecttheEditortab.
...:::[o]
x :,'_’ play .0 ; Mode I Serial Portl Fluwchart] Languagel Colour DI'I Simu1ation| Explorell
I - Editor....-
. SR BERES ~ Test Mode...
IR IR /v(? Colour Syntax ¢ RTF " Plain Text [ASCII)
e
o / — Colour Syntax Mode Options... — Serial Terminal... -
Set the following: I~ Use Collapsing Blocks
Text Mode to ‘Color Syntax’ I™ Wrap Long Lines ‘Header.. -
Color Syntax Mode Options as v [Sikodnceck(ist] Use
shown here. TabSize= [6 x| I Header Edit |
Exit the options screen by clicking | fSmaicon oot Reset to Defaults
the OK button on the bottom. —— |
[V Show options on startup K Lancel PRy

20

Every flowchart program should be tested and saved before it is converted to a down-loadable basic
program. Make sure your audio is turn on and at a level you can hear, then click on the Simulate button.

Flowchart Simulation

PICAXE Programming Editor - [Untitled Flowchart: 1]
ﬂ File Edit Flowchart PICAXE Wiew Window Help

The program will start running and the 2 | - 2 - . _
prog tart running and the - N & | B 2| 2| X| % &\
Curl’ent blOCk runn|ng W|” be h|ghl|ghted n Mew |Flowchart| Open Save Print Options Syntax Simulate | Program
I | |luhel .| ng| [ele] | (5uB) |

red. \ :::::::| a | « | o

The output pin will be black
and turn green when the song is playing.

The RST button will reset the program to
start when clicked.

[2 |
The other features of the Flowchart a1 4>
simulator will be explained later as they are Vian
used. End the simulation by clicking
anywhere on the grid. veins s suves e anves sagres o | [Geneic 6L

After the Flowchart program has been

tested it should be saved in a folder on your
computer where all your Snap Circuit® i
programs should be stored. In these - £ 7 3 ﬂff
examples the folder C:\SC MICRO
PROJECTS was created for this purpose.

Open the drop down menu under ‘File’ in the program editor and click on ‘save as’ to save the flowchart
program in your Snap Circuit® folder as shown on next page.

21

Save You may want to set up a special folder on

Savein: [59 SC MICRO PROJECTS -~ ER ki your computer to store files as shown here_, or
you can use the one that comes up when first
project is saved.

My Recent
Documents

7
g "—; f;
[=]
=]

After filling in the proper information the
window should appear as shown on the left.
Click on the ‘Save’ button. The flowchart
program will be stored and the save window

My Documents

=

o

My Computer W|” C|OS€
hg
My Network File name: IF‘roject 1| j Save I
Flaces
Save as type: IFIljwc:hart (*.cad) ;I Cancel |
A

PICAXE Programming Editor - [Untitled:2]

File Edit Simulate PICAXE View Window Help

. — - | | |
R EIRAERIEEIR
. New |Flowchart| Open Save Print | Options Syntax Simulate | Program
On the program editor screen, under the PICAXE®
heading click on the ‘Convert Flowchart to Basic ...’ %|I|ﬂ‘jl o) k| Y El
command. The following screen will appear. : DAGIE BORVESLE frea titvshire:
\3 'Converted on (Your date and time will be here)
4
5 .
. malin:
Open the simulator again by clicking on the Slmulator/lz/ label ¢ play 0, 0
button. The song should play. 5 R Toto labal_6 <
10
11
12 These Label numbers will be identical but may

be different from the ones shown here.

22

Program Flow Control and Breakpoints

Three new buttons appear on the main simulation panel. They are shortcut buttons for the Simulation

PICAXE Programming Editor - [Untitled:2]
Ed 7= =0t simuate Ficae Window Hel
xa__gwl@l [w_ll Z
1 '"BASIC converted from flowchart:
2 ‘C:~5C MICRO PROJECTS“Project l.cad
3 'Converted on (Your date and Time hers)
4
5
& in:
7 label 6:
-]
9 goto label_&6
i v T
12 5 m| [I
4 LI
3| w2 | 0
_RsT |
ADCCI]CS
n,."u 4 »]
4 L3 1]
i o
n;‘n vl o
Generic -I4|P|;J 0_| w3 |

menu functions.

You can stop simulation by clicking Stop button.

} single step through the simulation
| | pause the simulation at the current line
> start [] stop the simulation

Breakpoints can be placed or removed from the
program by clicking on the line number in the
margin. Alternately the Toggle breakpoint under
the Simulate heading may be used to
insert/remove a breakpoint at the current cursor
position. Breakpoints are indicated by a red bar in
the margin.

|_The >> putton displays the variables panel.

Other Simulation Options will be discussed and demonstrated in future projects as they are used.
Other windows that open on this screen will be discussed later.

Rework your Snap Circuit board to the circuit shown on the next page.

23

A
B
2
(© R [
Q RESISTOR
1
D D— <
E © 0
2
= 0
1

To Computer

Turn switch S1 to ON. Click on the ‘Program’ button or press F5 to download the new program. The new
program should play the Happy Birthday song and both LED’s should be off. In the program editor change the
play command to ‘play 3, 3’ and download again. When the new song starts playing remove the yellow snap and
rotate the ‘2 Snap’ to add the green LED. Rudolph the Red Nosed Reindeer should be playing and the LEDs
should flash in tempo with the music. Take some time to experiment with different combinations of the play.

24

PROJECT 2: ADDING AMPLIFIER & LOUDNESS CONTROL

Modify the Snap Circuit® from the previous project to look like the circuit below. The variable resistor RV
will be used to increase and decrease the audio level. The NPN transistor ‘Q2’ is used to amplify the
power to the speaker ‘SP’.

Assuming the micro-controller is still programmed to play and flash the lights, switch ‘S1’ to “ON” and
test the circuit.

To Computer

Use the loudness control to adjust audio level for desired loudness.

25

The advantage of a micro-controller is that the circuit need not change to produce different audio effects.
By modification of the program, all four songs can play, one after the other. Consider the flowchart

program shown below.

PICAXE Programming Editor - [C:\Documents and Settings\aseymour. ELENCO\Desktop\SC M
ﬁ File Edit Flowchart PICAXE ‘View ‘Window Help

3 L o~ » 3 T p
D& |2l 2| & | X| #| & | N\
Mew |Flowchart] Open Save Frint | Options Syntax | Simulage | Program
N ‘ Kila|a|@| 1]t |w |

PICAXE Programming Editor - [Untitled:2]

ﬁ Fie Edit Simulate PICAXE View Window Help
. o = 2 rl . P

D& |2l & | X | »| & | N\
MNew |Flowchart| Open Save Print Options Syntax | Simulate | Program

4B ole] [-] =

1 '"BASIC converted from flowchart:

2 'CinBC MICRO PROJECTSProject 2.cad

3 'Converted cn (Your Date & Time)|

4

5 main:

5} label_6: play 0, 3

7 wait &

8 play 1, 3

9 wait &

10 play 2, 3

11 wait 5

12 play 2, 3

13 wait 35

14 goto label_6

15

16

In the flow chart shown on the left, each song is
played one following the other with a 5 second
delay between each of the songs. Open the
program editor and draw this flowchart. Use the
simulate button to test that the program plays
the songs and pauses for 5 seconds between
each song. If the Flowchart passes the
simulate test save it in your project folder.

Under the PICAXE® heading click on the ‘Convert Flowchart to Basic....’ command. The screen shown

above and on the right should appear.

26

Project 3: The Value of Comments and Checking Program Length

Sometimes it can be hard to remember the purpose for each step of the program. Comments (an
explanation after the apostrophe (‘) symbol) can make each line of a program much easier to understand
and remember. These comments are ignored by the computer when it downloads a program to the
micro-controller.

A label (e.g. main: in the program above) can be any word (apart from keywords such as ‘switch’), but
the label must begin with a letter. A label must also end with a colon (:). The colon ‘tells’ the program
editor that the word is a label.

The previous program uses the wait command. The commands wait and pause both create time
delays. However wait is used with whole seconds, pause can be used for shorter time delays
(measured in milliseconds or 1000th of a second).

Wait must be followed by a number between 1 and 65.

Pause must be followed by a number between 1 and 65535.

® C:\Documents and Settings\aseymour. ELENCO\Desktop\SC MICRO PROJECTS\Project 2.bas It Is glso a gOOd programming
technigue to wuse tabs (or

f = =

fmlgﬁl% r::onll'um:ir:ll from flr.w«r::hart_:l Spaces) at the start of lines
2 'C:\SC MICRO PROJECTS\Project 2.cad without labels so that all the
z 'Converted on (Your Date & Time) commands are neatly aligned.
5 ‘ eeaes The term ‘white-space’ is used
g == play 0, 3 1;11;:?tH:[tpr,uaE'TLEllﬂlfl‘jrmktnlo‘rln lights by programmers to define tabs,
B wait 5 'Quiet for 5 seconds _ spaces and blank lines, and the
?D 5;?31:/ 51. 3 'Play Jingle Bells both lights correct use of White-Space can
11 play 2, 3 'Play Silent Night both lights make the program |isting much
15 i R By RedaTpH BovH TUpHeE easier to read and understand.
14 wait 5 , Note these changes were made
15 goto main Go back to start .

16 to the previous program and are
e shown here. Save program after

these changes and exit the flowchart conversion screen. On main editor screen reopen program.

27

Checking Program Length.

As programs become complex it is possible the micro-controller will run out of memory to store the
program. Check the previous program length by clicking the ‘Syntax Check’ button.

If there are no programming errors the
used by the program.

‘Success!” window will open and show the amount of memory

#* PICAXE Programming Editor

Fle Edt Simulate PICAXE View Wndow Help

B o] [0 <]
'BASIC converted from flowchart:
'C:~5C MICRO PROJECTS“Project 2.cad
'Converted on (Your Date & Time)

|o Syntax check successfull
main: ‘Start of main program Memory used = 243 hytes out of 2048
play 0. 3 'Play Happy Birthday both lights

wait S 'Quiet for 5 seconds

play 1, 3 'Play Jingle Bells both lights

wait S

play 2. 3 'Play Silent Night both lights

wait S

play 2. 3 'Play Rudeolph both lights

wait S

goto main 'Go back to start oK

To play all 4 songs and flash both lights, this program used 243 bytes out of 2048 or 11.9% of the total
memory. Remove the ‘2 Snap’ on U8 (S-Out or Pin 0) and connect the red programming wire.
Download this program. Then reconnect the ‘2 Snap’ and run the program.

28

Project 4: Other Sounds

The ‘sound’ command

Syntax:
PrinorCmes and Settings\Administrator\Desktop\SC MICR SOU N D p | n ’.(n Ote,d u rati on,n Ote,d U rati on..) .
D& r5,| 2| (X[%] &\ —_Pln Is a variable/constant (0-4), which specifies the i/o
New |Flowchart| Open | save Print | Options | Syntax | Simuiate | Program pln o use.
v W) w|o| 1]} @TE7|<|lEn|clEnl - Note(s) are variables/constants (0-255) which specify
""""""" ;:-~~-~;;::::;::::;.;::;:::::;typezﬂuiﬂequency.
oL)N Note O silent for the duration.
GO0 [T TN Notes 1-127 are ascending tones.
oL TR P Notes 128-255 are ascending white noises.
: | oo\ - Duration(s) are variables/constants (0-255) which

""" Coe/=f o\ specify duration of the note (multiples of approx 10ms).
e el e ol e e e e FUNCion:
s e aree s Play sound ‘beep’ (1-127) or noises (128-255).
b o s N e N S S e e e D Information:
---------- epetie LN oo\ Frequency and duration must be used in ‘pairs’ within

. the command. Draw the flow chart shown here.

 Use the ‘other’ button andNhe ‘... box Yo create the ‘inc b0’ box and the “let bO= 110” box. The
PICAXE Programming Editor - [Untitled:3] ‘Sound’ command is under the ‘out’ menu. Be sure to

Il e (e SRR PICAE W) Wi e edit the sound command to “sound 2,(b0,1)". Use the IF

: = : "4 >

D& B2 2| X| % &| X_\putton and the button to create the

New |Flowchart| Open Save Print Options Syntax Simulate | Program “b0>127" Iabel N

% [@| W[exfo =] -] : Y

'BASIC converte romn owchart :

> [CA35C WICR ;RgJECTS\éiOJELL3.cad .
Sl Converted on (Your date and time) Save the flowchart for your reference and convert it to a
g PR e e basic program. The converted program should be similar
§ ??“E‘u‘i ié%b?&ér’, Label_34 to the one shown on the left. This program is 21 bytes
T long and looks a little confusing. Try editing the program
12 | 7 aoto label_10 to appear as shown on the next page.

29

This program is 2 bytes less and much easier to read with less jumping and only one label. Of course
the comments will help later when you edit this for different applications.

PICAXE Programming Editor - [Untitled:3]

T T It is a good practice to build up a library of

1Rz 53| = T !)
L;w] POt e si ‘fﬁ & Syntax sﬁe Py small sub routines and then use them in
*|B[® w|eho]| =] different applications when they are needed.
é Faee: EE’EESrE%@.JEE?%’\E,?\ES'Z.E?E‘ﬁ..jl The more information stored in the library
‘Converted on (Your date an time)
[the easier it will be to import and use these
: o ¥ g e e g routines later.
8 if b0>» 127 then '1f Max freguency 1is reached
9 let b0 = 110 'reset to mid freguency
10 end if ! :e—.nd reset
1 gote main BREEE If you run a simulation of this program it will

m take a long time for the b0 variable to reach 127.

Open the variable panel;

. | ,x;| ‘ ’ | 5 ‘ X| Y | ;@J\ | Pause the program, and double click on the b0
|x|§|!| wlefio | = to change it to 115.

1 ‘BASIC converted from flowchart

B CCiavertad cn (Your Gato oad rims) :

- .. ' Restart the program and watch the b0 variable
|§ sound 2, (bo. 1) FSLEETT P Joop between 110 and 127. In simulation the

1 > en ; ax frequency 1is reache
10 T Prtmeren TRy sound command does not play the frequency.

i2 sote men et e Instead a ‘Beep’ is produced to let you know a
15 4 sound command was executed. After down
= rw || w1 =] [loading the real sounds will be heard.
m j bl 0 00000000
L / E g :uuomtm
- \1{]\; e Save program to your library then download it to
o play special effect sound. Close file.
b8 0 <Q0000000
b3 %
b10 M\
E B0 xtoooom00 \:\ 1.Pause & Start Button
- 20 =0 =l | S 2 Double Click b0
[pccocs =] @ Byte T‘WW\LHex\I\§ .
na J;|;|;| 0 ——EwETT 3.Edit to 115
Gl -l v+ 0 outpinsC 0 | %00000000
C2 -la]rfe+f O disC 0 | %00000000
nfa |4 |+]
Geneic |« | »|+] © ilq\ |

30

[Fie Edit Flowchart PICAXE View Window Help

° o 2 P |
D[& 2l2| 2 X| % | & \
New |Flowchart Options Syntax Simulate

Click on the PICAXE menu again and pick
Wizards and Ring Tone Tunes as shown
below.

PICAXE Programming Editor - [Untitled:2]

EFde Edit Smulate BUleLVicl View Window Help

| Program... £ | Ag, & \
| Clear Hardware Memory. .. Syntax | Simulate | Program
Check Syntax... F4
Debug... F&
1 E Analogue Sensor Calibration...
2 'CiNSC K] o)
4 3 i
5 Terminal... F8 :‘J;:w‘ "
6 main; Datalik... 7 phishedly
7 label_6:" - " COM to TCRAIP...
8) Convert Basic to Assembler (requires programmer) F2
9 wait 5
10 goto label_6 Serial OLED/LCD CGRAM. .
}% AXE110 Datalogger »
13 AXE210 PICANE Connect... »
AXE901 Dacta Viso Controlite...
NETO001 PICAXE Met Server]

PICAXE Programming Editor - [C:\Documents and Settings\Administrator\Desktop\SC MI(] PrOJ eCt 5: Th e Tu n e WI Zard

First create the simple flowchart shown here. In many
cases the flowchart will serve to indicate a process but

. direct conversion of the flowchart.

M’ the basic program will be greatly modified and not a

Next click on the PICAXE menu and select “Convert

Flowchart to Basic..

.". This will open the window shown

below. Place the curser at the beginning of line 8.

M PICAXE Programming Editor

- [Untitled:2]

Fle Edit Simulate PICAXE View Window Help

? y) - Y 4 ?

N&| B2 @ X| % & |\
New |Flowchart| Open Save Print Options Syntax Simulate | Program
X [B[e| w|ev[o]| =]

1 'BASIC converted from flowchart:

2 'C:NSC MICRO PROJECTS“Project5.cad

3 'Converted on (Your date and Tine)l

4

5

6 main:

7 label_6: tune 0, 0,{s00)

8

9 wait §

10 goto label_6

11

12

This will open the wizard as shown on the next page.

31

The Tune Wizard allows musical tunes to be created for the

PICAXE Tune Wizard micro-controller. Tunes can be entered manually or imported
e BRIy e from another source. These tunes or ring tones are also
| luntited \ available on the Internet, and used on some cell phones. The
~TempoBPM LED - tunes created by this micro-controller can only play one single
I = L note at a time (monophonic). The micro-controller cannot play
! ' :;: multiple notes (polyphonic) ring tones found also on the
2l Internet.
:‘ My Computer Start by opening a tune that
- : : already is on your computer.
- Local Disk (C) Click on the File menu and
() Program Files select ‘Open’.
4 Copy [() Programming Editor < Find the Program Editor
Duraion Noe Octave MNo.Vake ~ : directory and open the
Cotcher 74 <] [C <] /=] 1 510) music Christmas_1 folder as shown

() christmas_]1 “ here,

Open this folder (you may have to unzip — see page 34 for instructions on
extracting) and find the tune “Santa clause is coming to town” and select jt, | [secseseomgiotom

The wizard should load all the notes as shown here. \ it
Click the Copy button and the Copy window should open. i & i BT
5 & 5 s « 3-014
g A 5 §69
. “ ” . B - 8 B 5 $EB Tempo-BPM
Click the “Yes” button in the Copy Window to put tune into ¢ co8]
the program as shown on next page. : F 2
4 G 5 27 Copy
S S

Duration MNote Octave No. Value

\I{uavelh’s ~|lc =|]|s ~| 1 se0

i.) Tune is now on Windows Clipboard!

Paste into main document?

32

Santa clause is coming to town
was placed at the curser point
before opening the tune wizard.

® PICAXE Programming Editor - [Untitled:2]
ﬁ File Edit Simulate PICAXE View Window Help

_ = = »
D) | & 2| & X| ®| &N
New |Flowchart| Open Save Print Options Syntax Simulate | Program .
MTREEEEL =] Notice the tune data goes off the
T "BRSIC converted Tron [ovehert: visable screen and the program
"GN ~ ;
3 'Converted on (Your dat;oiﬁgt'riiz) 'Santa clause is coming to town has an eXtra tune Command that
- IS no longer needed.
g Tﬂ]i:-'ni 6 0, 0,(s00
3 t . .
8 'gait; Clauseu?: Ccnmlng(tcl gm-m Clean up the program to |00k ||ke
9 tune 0, 4,(5$60,%64,565,%27,3E7,$67,$69,%6B,$00,3$C0,%64,$65,$27,827,%27 .
10 : the one shown below using the
11 wait § .
o goto label_6 hints shown.
Ed -
D J-. | | The above tune that was on one
i "““‘;;G”__‘ o v line has been converted to three
o~ ~] . .
; I_JEASéLF ﬁ?nﬂ:rl‘sz}:l‘)éc$% ELDWChGISt 4 IlneS by addlng the underscore
3 ‘Converted on (Your date and Time) character at the end of each line.
5 : A 3 ’
g nain EE;:ta,Ci??z:ﬂ}?&:?s;??s;g,;E;’,\S&?,369,SGB,SI]U,$CD,354,365,327,52?,S??,SG?,SS?,sZS,sES,_ The 'eXtra tune Command Was
gu - 385,327,527 557,365,367, s26. K6, o4 507,500, 524,522, cks. som.00) = eliminated with the labels that
ié wato. were not needed. Runnig syntax
Syntax check successfull
a o i check shows the tune uses 91

bytes to program! OUCH! That is
a great deal of memory for just
one tune. Play the tune by
clicking the simulate button.

Notice how the first 26 notes are identical to notes 28 to 53. Except for the last note and note 27 the tune
is the same. Redundancy in programming is a waste of memory. Change the tune section of your
program by typing in or deleting the information on your screen to match the following;

33

PICAXE Programming Editor - [Untitled:2]

ﬁﬁle Edit Simulate PICAXE View Window Help

>

D % N\

2| & X &

New |Flowchart| Open Save Print | Options Syntax Simulate | Program

& (D1 W[o <] | -]
1 'BASIC converted from flowchart:
2 'C:58C MICRO PROJECTSM\Project5.cad
i 'Converted on (Your date and Tine)
5
6 main: inc bl
7 ‘Santa clause is coming to town
8 tune 0, 4,(%60,964,965,827 9E7,567,569,$6B,9$00,9C0,564,965,827,927,927,969,%67,%25,9E5,_
9 $24,827,820,824,822,8E5,52B)
10 if b0 ¢ 2 then 'First half?
11 tune 0,4, (SAD) 'Yes play niddle note
12 goto main
13 else
14 tune 0,4, (%80) 'Second half so play last note
15 end if
16 b0=0 ‘Reset for first half
17 wait 5 ‘Pause for 5 seconds
18 goto main 'Play again
19
20

Some folders may have to be unzipped
before they can be used. Use the music
folder in the Program Editor folder as shown
on the right. The tune can then be selected
from the regular Christmas_1 or tvthemes_1
folders. First select the zip folder and use
the right mouse button to get the drop down
menu shown here. Next click on the extract
all with left mouse button to make the
regular folder that can be used by the
wizard. Tunes can now be loaded and
tested on the computer by clicking the ‘Play’
menu. The tune played may differ slightly
due to the different ways that the simulator
generates the notes. Once your tune is
complete, click the '"Copy’ button to copy the
tune command to the Windows clipboard.
The tune can then be pasted into your main

A syntax check will show this
section is 71 bytes, or a
savings of 20 bytes of
memory. The tune will play
correctly after down load but
may have a few pauses when
played by the simulator.

The easiest way to place a
tune into your program is to
import them from the music
folder supplied in the Program
Editor folder.

i File Edit View Favorites Tools Help
@m > .’ /':j Search [Foders | [T71]~
 Address |2 C:\Program Fies\Pragramming Editor\music he 2

|
LJ Music Tasks

@ shop for music online

! -

File and Folder Tasks

@l Rename this file
[y Move T
() copy this file
() E-mail this file
¥ Delete this file

Other Places

) Programming Editor

& My Music
§ My Computer

g My Network Places

Scan against viruses with AVG

Search...
Explore

Extract All...
Ml Scan with AVG
Opean With
Send To

Cut

Copy

Craate Shorteut
Delete
Rename

Properties

Regular

program at the curser position. Of course tunes can also be written into the wizard one note at a time.

34

Tune Wizard menu items and shortcut keys:

File
New Ctrl + N Start a new tune
Open Ctrl + O Open a previously saved tune
Save As Ctrl+ S Save the current tune
Import Ring tone Open a ring tone from a text file
Export Ring tone Save tune as a ring tone text file
Export Wave Save tune as a Windows .wav sound file
Ed Close Ctrl + X Close the Wizard
it
Insert Line Shift + Ins Insert a line in the tune
Delete Line Shift + Del Delete the current line
Copy BASIC Ctrl + C Copy the tune command to Windows clipboard
Copy Ring tone Copy tune as a ring tone to Windows clipboard
Paste BASIC Paste tune command into Wizard
Paste Ring Tone Ctrl +V Paste ring tone into Wizard
Play Play the current tune on the computer’'s speaker
Help Open a help file.

To create a song note by note use the chart and guide shown below.

C5# F5& G5# ASE Co# DGt Fa# Ga# AGE CT DT# FT# G ATE
[+ DS ES F5 G5 AS D& E6 F& G6 AB B& cr D7 ET F7 G7 AT B7
N NS Y
Octave 5 Odave 6 Octave 7
C5 =262 Hz C6 =523 Hz("Middle C") CT =1047 Hz
C5#=2TTHz CE# = 554 Hz CT# =1109 Hz
DS =204 Hz DEé =587 Hz D7 =117T5Hz
D5# = 311 Hz D&# = 622 Hz DT# = 1245 Hz
E5 =330Hz E6 =659 Hz ET =1318Hz
F5 = 349 Hz F6 =698 Hz FT =136Hz
F5& = 370 Hz FE2 = 740 Hz F7Tg = 1480 Hz
G5 = 382 Hz GE6 = T84 Hz GT = 1568 Hz
G5#=415Hz GE# = 831 Hz GT# = 1661 Hz
AS =440Hz AB = B80 Hz AT =1T60Hz
ASH = 466 Hz AB#H = 932 Hz AT# =1865 Hz
BS = 494 Hz B6 =988Hz BT =197¥5H=z

35

Project 6: Robotic Sounds

This project explains the use of the random command and labels. Build the following flowchart.
The random box can be found under the
G| 6 <t

Use the ‘label’ button to add notes to help
explain each section of the flowchart. A good
practice is to create a word document with
both flowchart and basic program side by
side. These labels help tie the two charts
together.

When you test your flowchart with simulate,
blocks should turn red as the program loops.
A beep should be heard when the sound
block turns red. If no errors occur, save the
flowchart to your library. Use the PICAXE®
drop down menu to convert this chart to a
basic program. The result should be similar
to the one shown here.

"BASIC converted on flowchart
‘C:\SC MICRO PRO ':.--Tc FFﬁT»-rTF CAD
nverted on Date at Tine

.......... - e e y.-y--...s main-
""""" 3 T pause b0 PAUSE FORRANEO”A”OU“ OF-"!E' e fas AT A I 'Hote: it is recommended to Ch-‘tgls l—wt,-—- variable here to word variable!
e SR Pl S [— e ol e Rt D R ‘(see manual for details about 'random’ command operation)
.......... 42,9 label_6: random b0
e A L e I e S e S e B e i AR e if b0 127 then label_18
...........‘................_...........‘.........‘......11 letbgzbu

12 label_27: if b2¢ 60 then label_33

1z} label 34: sound 2.(b2.4)

14 pause bl

15 goto label_6

16

17 label_18: let b2=b0- 127

18 goto label_27

19

20 label_33: let b2=b2+ 65

21 goto label_34

22

36

M PICAXE Programming Editor
File Edit Flowchart PICAXE View Window Help

21 =% ?] & 3 :
N& B2 & | X| %] & |\
|Flowchart| Open Save Print Options Syntax Simulate | Program
led:2 T ~
w0 <] | -l =
1 'BASIC conwverted from flowchart: b L3 LkJ @ & | | ‘ I # label ‘E@I@ E
2 YEENSE MIERG EROJEEISSFigject . 6. cad =] B)
i3 'Converted on (Your date and time) b SN G0 B0 B0 O e o B D 80 U 8 O e
{4 L o TR DR IS S
|5 e
|6 =tart: random wi 'Wa= b0 Hote appeared to make wil B
17 if bOr 127 then TooBig 'White area must reduce g
2 l=t bZ=hb0 'Set Tone i
&l EigQwver: if bd< 60 then TooSmall 'Below audioc tone level Lt
(10 SayBeep: zound 2,(bZ,4) 'Make beep for small duration L:maa e
(11 pause bl 'Random pause e
12 goto start 'Do Again Biidii ¢
13 e
!14 TooBig: let bZ=bZ+ &5 'Reduce to audio level frequency Lo
115 goto BigQOwer 'Return Ene:
18 B
(17 TooSmall: let bZ=bi- 127 'RFai=ze to better freguency lewvel o2t
(14 goto SayBeep 'Return -
19 e
20 R S
21 B
: : &
L o - .1. -

o)
K 3 E
< I >
“[picaxeosmz [coma [cams | [m= [sppoiz | e3ipM

| &l Snap-Micro Rev B -Mi... M PICAXE Programming ... f‘ Q"JE:-J]" % %, 6:31PM

The picture above shows the same basic program after changes and editing to make it more readable
and the flowchart. This picture was created by overlapping the windows in the program editor and using
the print screen <prt sc> key to place entire screen on clip board. It was then pasted into this word
document. A document similar to the picture above can be created and stored in your library for future

use.

37

RANDOM TONES USED FOR ROBOTIC SPEECH.
Project 7: SWITCHES AND DIGITAL INPUTS

Digital Inputs
A digital input can only be ‘on’ or ‘off’. Some examples of a digital inputs found in Snap Circuits® are:

* Push Button Switch Always ‘OFF’ when released

* Slide Switch @—{1 — ()| Stays ‘ON or ‘OFF’ after switching.

Most switches use a metal contact that snaps into place. This action may cause the switch to bounce
and produce “switch noise” when it is closed. The program below should change the state of the LED
each time the Push Button switch is pressed. In this program output pin 4 toggles (changes state) every

time the push switch on input pin 3 is pressed.

Using the Program Editor construct the flowchart shown here. Then use the PICAXE® menu to convert it
to a program similar to the program on the right. When the program on the right was edited for clarity,
the ‘pause 100’ was added as a note. This should be made a command by removing the first apostrophe
in front of the “pause” if the switch is very noisy when pressed or released. Save chart and program.

PICAXE Programming Editor

File Edit Simulate PICAXE View Window Help

e L o > 1] g
D& | B2 & | X| # "
taew Flowchart| Open Save Print Options Syntax Simulate | Program

......

El

'"BASIC converted

x&m | |I1D_II

maimn:

EF:

‘pause 100
goto
BX : toggle 4

ER:

goto

38

if pin3=0 then

from flowchart:

'C:~SC MICRO PROJECTS“Project
'Converted on (Your date and time)

1f pin3=1 then BX

BP

mnain
ER

7 .cad

‘Add a1f nDlsﬂ
‘Is button down
‘Loop if wup

‘Change LED state

‘Goto start if released
'Loop until released

[»]

1 2 3 4 5) 6 7 8 9 10
Build this circuit

= To Computer
K ; ; /

Load the program into the micro-controller. As shown in the flowchart, the first two lines make up a
continuous loop. If the input is off (=0) the program just loops around between program lines numbered 7
and 8 on the left side of the program. If the switch is on (=1) the program jumps to the label called ‘BX'.
The state of output pin 4 is toggled and then the program drops into a second continuous loop that waits
for the button to be released. After the button is released the program jumps back to the beginning and
waits for the next push. Take note that only a label command follows the “then” in the “if” statement. No
other words apart from a label are allowed in this position. Keep circuit for next project.

39

PROJECT 8: COUNTING AND DISPLAYING EVENTS

Modify the previous circuit to look like the one shown below.

G To Computer
\ 1 2)Z‘ Add this part

Create the flowchart and program shown on the next page.

40

#® PICAXE Programming Editor - [C:\Decuments and Settings\aseymour. ELENCO\Desktop\SC MICRO PR d eb U g
afl Fle Edt Fowchart PICAXE View Window Hep Syntax:

Bl 2| & 3\: Ay DEBUG {var}
i 2o - Var is an optional variable value (e.g. b1).
’um ’ j || Function:
T [PROJECT 4 COUNT AN DEPLAY ', £ 17 iie f e Jn i Ba ity S Display variable information on computer in Debug Window

8

SR e The debug command uploads the current variable values for all the

L L et L LTl L oy TTON RELEASED GOTO STARTLLY a1 il sy Slcit variables via the download_cable to the computer screen._Thls ena_bles

coccc e | the computer screen to display all the variable values in the micro-
Moot/ mee /o | controller for debugging purposes.

------------------- || Note that debug acts on ‘B.0 / output 0’. Therefore programs that use

.................... |oooooiiosiiiio | output O may corrupt the data condition. In this case it is recommended

S o use the following structure before a debug command.
el | low BLO ‘reset B.0 to correct condition

. | crance sTateOFREDLED. . | pause 500 “ wait a while

DR TR e |5e dnitessia ik | debug display values on computer screen

e el o Note that the debug command uploads a large amount of data and so
significantly slows down any program loop.

""" toggle 2

Make the flowchart shown on left.

fee e e [2. Use PICAXE drop down menu to convert to basic
fed doed Roh o Bap s ok - e e /3. Edit program for clarity and add safety reset.

Yo A0 RN DR % B 2 0 niin nn G ST SRR R Go to next page for notes on running the program.

™ Untitled:2

XIIIEI »| e

o =11 [~ oo [0 -] 2|
1 'BASIC converted from flowchart: 1 'BASIC converted from §lowchart:
2 'C:\SC. MICRO PROJECTSN\Project B.c 2 'C:\SC MICRO PROJECTSYProject 8.cad
Z] 'Converted on (Your date and tj 3 'Converted on (Your date and time)
4 'Edited 4
5 5
6 main: high 4 '"Turn on green LED 6 main:
7 low O 'Reset pin 0 7 label_6: high 4
8 pause 500 'Let things settle 3 debug bl
9 debug bl 'Display data on screen 9 low 4
10 low 4 '"Turn off green LED 10 label_1B: if pin3=1 then label_26
11 Hloop: if pin3=1 then Hpress 'Check for hutton press 11 goto label_1B
12 goto Hloop 'Loop if no press 12
13 13 label_26: toggle 2
14 Hpress: toggle 2 'Change red LED state 14 let bl=bhl+ 1
15 let bl=bhil+ 1 '"Increment bl variable 15 label_34: if pin3=0 then label_6
16 Lrelease: if pin3=0 then main 'If button released goto start 16 goto label_34
17 goto Lrelease 'Otherwise loop until released 17
18 18

41

Switch pressed 12 fimes

outpinsC 16 $10 %00010000 = - -

s a__ a5 e - If the switch is pressed and released quickly
— - —— S — while the red LED is still on, the event will be
5 12 %qc woooorio — missed. If it is only pressed and not
b2 0 $00 #00000000 = 0 $0000 1

= T e released, then the event will be captured.

b4 0 $00 | 400000000 — 0 $0000

b5 0 00 | %00000000 =
b6 &S | oo | = o so000 Notice that the bl variable value is shown in
2! oo —— <t decimal (12), hexadecimal ($0C), and binary
b3 0 | $00 %00000000 — (%00001100). For now the decimal output
b10 0 $00 %00000000 — 0 $0000 ” b ” d AI h bl . bl .
b1 0 so0 | %oo000000 — will be all we need. Also the variable is
bi2 0 $00 %00000000 —

0 s B2 the high byte of WO, therefore WO will
LI [v" Align Bytes & Words

increase by 256 every time bl increases.
For more information on this use the help file
provided in the program editor.

(=28~ RN — 3 — DY~ BE — R —]

Since the green LED is only ON during odd
values of bl, the light should have been lit
during values 1,3,5,7,9, and 11. The light
has been turned on 6 times, off 6 times, and
is presently off. Although we are using a light, the event could have been a switch to open a door, turn
on a motor, start an oven, or any other event that would need monitoring. The Debug window is not very
user friendly but there is another command ‘sertxd’ that can improve monitoring.

o
Is

Close

The same circuit will be used in the next project.

42

PROJECT 9 - Using Serial Terminal with Sertxd

The sertxd command sends a user defined serial string to the computer (at baud rate 4800). This can be
displayed by the included Serial Terminal function under the PICAXE®>Terminal drop down menu. The
Serial Terminal can also be automatically opened every time a download takes place by checking the
“Open After Download”» box in the View>Options>Editor drop down menu.

No flow chart is needed in this project since we are only changing the ‘debug’ command to the ‘sertxd’
command. Open project 8 basic program in the editor and change it to the following.

'BASIC converted from project 8 by hand: ;
'C-\SC HICRO PROJECTSNEROJECTS BAS All text must be placed in
guotation marks and

‘Converted on DATE at TIHE _
should appear in red
(default color, but may be

mnain: high 4 ‘dizlay n ninal screen))
gertzd("The switch has been pressed ",#bl." times ",13,10) changed INn program editor
low 4 v\Siptions.)

Hloop: if pind=1 then Hpress 'EUTTON PRESGED 0 = line feed (LF)
goto Hloop '‘Loop if not pressed 13 = carriage return (CR)

Hpress: toggle 2 Variabl d the # si
let bl = bl + 1 ‘increnent bl ariables need the = sign

in front of them and will be

Lreleasze; if pin3=0 then main ‘if BUTTOH RELEASED goto =tart dlsplayed n purple.

goto Lrelease ‘othervize loop until released

= = = = b b R oD 00] O 6] e G0 B
L o o S o O Y R T N Y e |

am

To open the Terminal window use the PICAXE® drop down terminal or press F8 function key. The
terminal window shown on the next page will open.

43

Serial Terminal (4800,n,8,1)
File Edit Refresh Optons

" Mon-standard (4<E027 anky)

—Baud Rate
300 " &00 1200 2400 " 57600
@ 4800 ¢ 9600 ¢ 19200 38400 76800 /

4800.n.8.1

Input Buffer...

The switch has been pressed 1 times.
The switch has been pressed 2 times.
The switch has been pressed 3 times.
The switch has been pressed 4 times.
The switch has been pressed 5 times.
The switch has been pressed 6 times.
The switch has been pressed 7 times.
The switch has been pressed 5 times.

Output Buffer...

™ Serial Terminal (4800,n,8,1)
File Edt Refresh Opfions

(~ Non-standard (4xE027 only)

—Baud Rate
300 600 1200 2400 " B7600
® 4800 (" 9600 ¢ 19200 (38400 (76300

4800.n.8.1

Input Buffer...

S31=1 times=.
31=Z times.
31=3 times.
31=4 times.
31=5 times.
31=6 times.
31=7 times.
31=8 times.
31=9 times.

Cutput Buffer..

Send [

Each time used, go to Options and set up as shown here;

Make sure the Baud Rate is set to 4800.

Each time the S2 pushbutton is pressed
the micro-controller records the event
and then transmits the message shown
on the Serial Terminal.

Notice how much faster this message
transmits compared to the debug

* Serial Terminal (4800,n,8,1)
Fie Edt Refresh ESSIEE
Baud Raie w R S ey Between sent bytes

300 «

v Add <CA> on Send

& 4800 OG00D ¢ 19200 JR400 FEE00

" Han-standard (AXE027 onby)

Input Bufier.

480008,

Cuput Butar,

information. Try and press the pushbutton fast enough to

miss an event. To make the transmission even faster, shorten

the data to something like “S1=", #b1, “ times”, 13, 10.

The first line will say “S1=0 times.” if the micro is turned off
and back on again. The second line in the program will then
be transmitted after the switch is pressed and will say “S1=1

times.”.

Data can also be stored and not transmitted until required or

asked for by main computer.

The next project will use the terminal to send information to

the micro-controller, process the information, and produce an

output or result of the input.

44

To Computer

Build the circuit shown here. Place D2 over yellow lead and 2 snap as shown.

PROJECT 10 - Using Serout, Serrxd, & Terminal Window

45

Open the program editor and make the following flowchart.

PICAXE Programming Editor - [C:\Documents and Settings\aseymour. ELENCO\DeskiopiSC MICRO PROJECTSYProject10. cad] C O]
ﬁ File Edit Flowchart PICAXE View Window Help - 8 %

A

Program

°
oy
a8

Flowchart

3

Options

A.Bf‘/
Syntax

[| 57

&

Simulate

ﬁ

Print

B #

Open Save

™

INewy

4 lobel

X & L] H

delay

&

R S s o . serout 0,M2400 (" Press Pushbutton to hear Song "b1,13,10) 0~ 0 0 ° S s ——

play

=
o]

e
-G °
]

[=1
=
° o = ° o

select case bl case

. / 7
serout 0,N2400,(" Enter Song fumber & Click Send ", 13,10)
[—

allo e acoaobon s 5 case =" G5 0500 odobo00 A 5 .
allo e acoaobon s id\sconnect;"" 5 G5 0500 odobo00 A 5 Plary

MANT BOXKES MADE FROM " " BUOX

serrd b1

N R ﬂh@

R

serout 0,N2400,(" Song Mumber 1to 4 anly! ,13,109)
..... A R

play- 1,2 pause 1000 endselect

Save flowchart and then use picaxe menu to convert flowchart to Basic and edit as shown on next page.

46

Bd Fle Edt simuate PICAXE View Window Help

= 2 | #

D& | B2 &2 | X | @ & N\

Mew |Flowchart| Cpen Save Print Cptons Syntax | Simulate | Program
wle] o - =l
1 "BAZIC converted from f{lowchart:
2 'C:~BC MICRO PROJECTEProjectlO.cad
3 'Converted on (Your Date & Time)
4 "A1]1 lahels were changed to hetter names
9
B main:
7 start: let bl= 0 'Set no sonyg picked condition
8 pause 1000 'wait 1 second then send message to screen
9 serout 0,W4800, (" Enter Song Humber & Click Send ",13.10) 'Changed baud rate to 4800
10 disconnect 'Tell micro to stop looking for program
11 getselect: serrxd hl 'In put the song number on S-in pin
12 1f bhl= 0 then getselect 'I{f no song number look again
13 reconnect 'Tell micro 1t can look for programs agailn and send message
14 serout 0,H4300, (" Press Pushbutton to hear Song ",b1,13,10) 'Changed baud rate to 4500
15 nobutton: if pin3=1 then getsong 'If pushhutton presced goto getsong
16 goto nobutton 'If no pushbutton pressed look again
17
18
19 getsong: select case bl 'Select song to plavy
20 case = "1° '"Happv Birthdayvy
21 play 0, 2
22 case = "2° 'Jingle Bells
23 play 1, 2
24 case = "3° 'Silent MNight
25 play 2, 2
26 case = 4" '"Fudalph
27 play 3, 2
28 else
24 cserout 0,H4300, (" Zong Mumber 1 to 4 onlvw!",13.10) 'Bad numher
30 pause 1000
31 endselect
32 goto start
33

Save program then load the program into the micro-controller. Depending on your option settings the
terminal window may open after download. If not open the terminal window (F8). Turn the micro-
controller on and the message “ Enter Song Number and Click Send “ should appear in the terminal
window. Enter the song numbers 1-4 and click the Send button. The message “Press Pushbutton to
hear Song” will appear in the Terminal Window. Press the pushbutton on the snap circuit board and the
song you picked should play.

a7

PROJECT 11 — Adding Modifications

#F PICAXE Programming Editor - [C:\Documents and Settingstaseymour. ELENCOWDesktopySC MICRO PROJECTSYProject 11.bas]

ﬂFlIe Edt Simulate PICAXE View Window Help

G 5 »
D& Bl 2| @ | X| @ | &N
Mew |Flowchart| Open Save Print | Options Syntax | Simulate | Program
AR Dle] [-]] <]
1 'BASIC modified from Project 10
2
3
4 main:
5 start: let bl= 0 'Set no song picked condition
[4] pause 1000 ‘'wait 1 second then send messags to screen
7 serout 0,M4800,(" Enter Song Number & Click Send ",13,10) 'Changed baud rate to 4800
[l disconnect 'Tell micro to stop looking for program
el getselect: serrxd bl 'In put the song number on 3-in pin
10 if bl= 0 then getselect 'If nc sony number look again
11 reconnect 'Tell micro it can look for programs again and send message
1z serout 0,HM4500,(" Press Pushbutton to hear Song ",k1.13,10) 'Changed baud rate to 4300
13 nohutton: if pin3d=1 then getsong 'If pushbutton pressed goto getsong
14 gato nobutton 'If no pushbhutton pressed laook again
15
16
17 getsong: select case bl 'Zelect song to play
15 case "1","h","H" 'Happy Birthdawy
19 play 0, 2
20 case "2U, Uit MTN 'Jingle Bells
21 play 1, 2
22 case "3, "s",ME" 'Bilent HMight
23 play 2. 2
24 case "4","r","R" 'Rudolph
25 play 3, 2
26 else
27 serout 0,M4800, (" Song Not Availble",13,10) 'Bad input
28 sound 2,(115,25,90,10)
29 pause 1000
S0 endselect
31 goto start
32

In the previous project a number
greater than 4 would produce an error
message. The songs were
programmed as follows;

1. Happy Birthday

2. Jingle Bells

3. Silent Night

4. Rudolph the red nose reindeer

Let’'s modify the program so a small
or capitol first letter of the song will
also play that song.

On the left you can see the case
equal sign has been removed and a
list of inputs has been added.

What happens when a wrong input is entered? Try making your own sound for an error.

48

PROJECT 12 - THE DC MOTOR/GENERATOR

The information shown here was reproduced from the web site;
http://en.wikipedia.ora/wiki/Brushed DC Electric Motor#Simple Two Pole DC Motor

Brushes

A simple DC electric motor. When the coil is powered, \ When thenarmature becomes horizontally
a magnetic field is generated around the armature. The armature |laligned, the>*commutator reverses the
The left side of the armature is pushed away from the |continues to ||direction of current through the coil,

left magnet and drawn toward the right, causing rotate. reversing the magnetic field. The process
rotation. then repeats.

Because DC motors use brushes and act as generators they will produce voltages that interfere with the
micro-controller program. The DC motor provided with your XP Snap Circuits® parts was modified to
reduce this problem. The motor number should be MX and the motor should have 3 capacitors inside
the case. The following circuit will test the program while motor is running with and without a load.

The following symbol is used to represent the DC Motor, Pay attention to the “+” sign since it will
determine the direction of rotation when power is applied.

Build the circuit shown on the next page and open the (O (@) *

program editor to make the flow chart that follows.

Convert flow chart to the basic program shown. Use only fresh alkaline batteries in this project.

49

Motor Test Circuit 3 @il |m|9 Place C2 as shown by arrows to help remove motor noise.

ST L . 3 . =

-

+ sign here!
= O & =—=
F +
/ 1l &
f’—“\\\ -
&= —J

To Computer

G_

1 '"BASIC converted from flowchart projectl?:
-2 "'C:NSC MICRO PROJECTSNPROJECT12A.CAD
3 'Converted on DATE at TIME
4
s
e -] main:
- 7 pause 1000
8 high 4
-.- I8 pause 10000
S (1L low 4
i =top
12

Download and run program with load (Fan) and without load. Time should be 10 seconds on each run. If
program stops before 10 seconds check batteries. Always use fresh alkaline batteries.

50

SECTION 3: PROGRAMMING FOR SNAP CIRCUITS®

PROJECT 13 — THE FLYING SAUCER
Build the following Snap Circuit® ... note the “+” on the motor.

+ sign here!

Motor

G
\\ / To Computer

51

F\Ia Edit Flowchart PICAXE View Window Help

Build or download
the flowchart on

2 | = p b 4 - 2
o - P >
& B2 2| | &
Mew [Flowchart| Open Save Frint Options Syntax Simulate | Program
Label Eg:g‘ Qb [deLay] E

the left. Use the
PICAXE menu to

serout 0,N2400,(" Input 2 Digit Pow

let bO=b0- 48

if Bl ==

er Level ",13,10)

0 and bl < 10 then

R F R R Ea iy TP R
. pause 1000

elze goto Badnum

E
W
o

Lifbl==

Oand b1 =10then | | | | .| reconnect

let 60=0

=erout 0,N2400,("Send gc te Launch for"#b0,":"#b1," Seconds” 13,10)

forb3=1ts 10 . .

convert to the
program below
and modify as
shown.

After conversion
the baud rate was
changed from
N2400 to N4800.
All other baud
rates were also
changed to

N4800.

Labels were also

Bl Fi= Edt Smulste FICAXE Wiew ‘Window Help

Il_l 1"’l("”ﬁ“ =

Prlnt Options | Syntax | Simulate | Program

1
2
3
4
5]
&
7
I3
kl

"BASIC converted from flowchart:
'ConSC MICRO FROJECTS~Frojectl3. cad

'Converted

‘Label=s renamed & haud changed to 48

main:

Eadnum:

on (Your Date & Tine)

pause 1000
serout 0, H4800, ("
disconnect
serrxd bLO.bl
let bO=b0O- 48

if b0 5= 0 and b0 < 10 then
let bl-bl- 48
=l=e goto Badnum

Input 2 Dig

endif

if bl»= 0 and bl < 10 then
wi=h0=10 + bl

w?=w7%100

=lse goto Badnum

endif

serout 0, N4SUU {"Send 'go' to
serrzd ("go”

reconnect
for b3 =
for b4 =

sound
next h4
next hbi

1 to 10
110 to 127
.(b4.13

goto main

sercut 0,H4800,("Bad Input Hu
let bO= 0
let bl- 0
goto main

it Powsr Levsl ".13,10)
"Stop looking for downloads and use S-In as input
"Input 2 ascii characters

‘Convert first ascii charactsr to decimal nunber
'I= first character a digit from 0 to 37

'If yes convert second ascii to o nunber

‘If no goto bad nunber routine

'Finished with first character

‘Iz =s=cond ascii a digit

‘If ye= calculate delay in nillissconds

'Convert to scconds and one decimal place

‘If no goto bad nunber routine

'Done checking input — Fange allowed -
Launch for ", #b0.":" #bl,"' Seconds. ",
‘Lock for 'go' comnand

'Done using 5-In =o start looking for dowaloads again

0 to 9.9 =sec
13.10)

‘Do 10 siren sounds
'Hake =siren sound
‘Do Alarm for prelaunch

'Start motor
‘Run for launch tins set
'Stop motor

mber! " 13,10)

52

changed after conversion.

Program the micro-controller and use F8
key to open terminal and use launch pad to
send flying propeller to different heights.
Enter 05 for .5 seconds of motor spin. And
45 for 4.5 seconds of motor spin. The longer
the motor spins the higher the fan will fly.
Go must be entered after the time to launch
the fan. A warning sound will play before
each launch.

PROJECT 14 — Analogue Sensors & Analogue to Digital Conversion (adc)

Analogue Sensors:

An analogue sensor measures continuous signals such as light, sound level, position, or voltage.
Common examples of analogue sensors are:

 Variable Resistor (RV)

The variable resistor provides a varying voltage dependent
on the center arm position. A voltage signal from 0 to 4.5
volts can be placed on pin 1 by adjusting the slider. The
micro-controller converts this analog input into a digital
number that can be represented by a decimal number in the
range 0 to 255 (8 bits) or 0 to 1023 (10 bits).

* The “Photo Resistor” (RP) or “Light Dependant Resistor” (LDR)

RP // The _photo resistor or light dependent resistor_provides a
[J varying voltage dependent on the amount of light. A voltage
PHOTO RESISTOR signal that changes with the intensity of light can be placed
on a microchip input by using the photo resistor. The micro-
controller converts this analog input into a number that
represents the amount of light on the resistor.

» Microphone (X1) The microphone provides a varying voltage dependent on the amount
"|" j of sound present. A voltage signal that changes with the intensity of

. ‘ ‘ sound can be placed on a microchip input by using the microphone.
MICROPHONE Xl

The micro-controller converts this analog input into a number that
represents the amount of sound present.

53

readadc

Syntax:

READADC channel,variable

- channel is a variable or a constant that sets the input pin (1,2,0r 4)
- variable is the name of the variable that holds the converted data.

Function:
Read the ADC channel (8 bit resolution) contents into variable.

Information:

The readadc command is used to read the analogue value from the micro-controller input pins 1, 2, or 4.
The readadc command converts this value to an 8-bit variable. An 8-bit resolution analogue input will
provide 256 different analogue readings (0 to 255) over the full voltage range (e.g. 0 to 4.5V). Note that
not all inputs have internal ADC capability. Use the readadc10 command to read the full 10-bit value.

-

co oo oo o] Convert to Basic,
oo Program:

main:

| w1=b0*4 | readadc 1, b0

FEEE FERE R wl=b0*4

i high 4

pause wl

low 4

pause wl
goto main

ol -] Enterthe flow chart shown here into the program editor then build the circuit
shown on the next page.

54

Download program and adjust RV for LED blinking rate.

55

To Computer

Edit the previous program to use 10-bit accuracy as shown here.

readadc10
Syntax:
READADC10 channel,wordvariable

- channel is a variable or a constant specifying the input pin (1, 2, or 4)
- wordvariable is the name of the wordvariable that holds the converted data.

Function:

Read the ADC channel (10 bit resolution,
0 to 1023) contents into a wordvariable.
Information:

The readadc10 command is used to read
the analogue value into the micro-
controller with 10-bit accuracy. Since the
result is a 10-bit number, a wordvariable
must be used. Note that only input pins 1,
2, or 4 have internal ADC functionality.

D 00 =] O O s ~ =

T
u)

BASIC converted from flowchart:

C:n\5C MICRO PROJECTSSNFROJECT14 .CAD

'"Converted on DATE at TIHME

readadcl(1% wi

'check RV position
high 4 "turn LED on
pause wl ‘delav
low 4 "turn LED off
pause wl ‘delay
goto main 'repeat

Download this new program and note the difference in program length and functionality.

8 Bit Conversion Program

18 bytes

Delay between LED flashing increments by 4,
for example;
0,4,8,12,16,

........ ,1012,1016,1020

10 Bit Conversion Program

13 bytes

Delay between LED flashing increments by 1,
for example;

0,1,2,3,4,5,6, 1021,1022,1023

In some cases the 8 bit resolution is adequate to do the job, but when a finer resolution is required, use

the readadc10 function.

56

PROJECT 15 — Auto Calibrating Digital Voltmeter

1 2 3 4 5 6
1
A— 0 o © o o
('] e
2@ > p A
[y
LLI
a4

O
Q
©)
N
©
D

2 O 1
5 AAARZ. 5 AAARI.\
D = © 1KQ © 1 = © 100Q RESISTO
2
1 1 3 1
E O © o o O o o
. o = /
= ® o .' ¥ 7 To Computer
2 G 2 /
) o o O

e

The Snap Circuit® shown above uses the base-emitter junction of transistor Q2 as a reference and
calibrates the internal A to D for correct voltage readings. This self-calibration technique eliminates the
error that would occur as batteries discharge. It also eliminates A to D differences from circuit to circuit.
After building this circuit, use the flow chart and download the program shown on the next page. Open
the terminal window by pressing F8 or using the drop down under the PICAXE® menu. Adjust the RV
slider for different voltages and press the S2 pushbutton to get a reading. When the slider is all the way

up, the voltage will equal the battery voltage.

57

Voltmeter Flowchart;

.. In the Auto-Calibrate section
the base-emitter voltage on
Q2 is read on pin 2 of the
micro-controller. Variable w6
is then adjusted for the
correct reading. This is only
calculated once each time
the program is started.

------ -~ "The RV voltages are then

...... ... read on pin 1 of the micro-

------------------- -+ controller and calculated
using variable wé.

___________________ -t|.-.. The digital number is

- formatted to read as a
-1 decimal and sent to the
40 terminal display.

N L

g doagaiﬂ::v\The process will repeat after

buttonup? - - - - - - - - - the pushbutton is pressed

N I 1 o [l (=] ST TSYTo B

Since the “if” box in the flow chart does not support word variables, b11 was used with a note to make it
“w2” after converting to basic. The number “74” in the “if” box is a guess at the base-emitter voltage (.74
volts) and can be changed to the actual voltage measured from base to ground when circuit is active.
After converting and editing, the basic program should read as shown on next page.

58

Voltmeter Program,;

Ed Fie Edit Simuate PICAXE view Window Help

= -
D& | Bl 2| & | X | %] & | N\
Mew |Flowchart] Cpen Save Frint | Options Syntax | Simulate | Program

%[Blel wle] oo =]

1 '"BAZSIC converted from flowchart:

2 'C:EC MICED PROJECTE~ProjectlS.cad

3 'Converted on (Your Date & Time)

4

5

G main:

7 wh=80 'starting point for wvariable wb

g calbrate: readadcl0 Z,wS 'read the reference diode

| wi=wS*a0- wh 'walculate reference valtage

10 if wz= 74 then WM '"if wrong goto next step, otherwise measure input

11 ine wh 'increase the reference variable hy 1

12 goto calbrate 'try again

13

14 W readadel0 1,wl 'read the input wvoltage

15 wZ=wl*h0-wh 'calculate the decimal readout

16 wi=w2./100 'get the digit hefore the decimal point

17 wd=wz2/100 'get the decimal portion of the voltage

18 serout 0,N45300, (#w3,". ", #wd," Volts",13,.10) 'displav wvoltage

19 nopush : if pind=1 then wespush 'Wait for nezt press of pushbutton

20 goto nopush

21

22 vespush: 1f pin3=0 then WM 'when button is released do again

23 goto vespush

24

25

Make sure baud rate is at 4800 when using terminal window.

The variable w5 stores the reading between 0000 and 1023 that represents the reference voltage. If the
battery voltage equals 4.5 volts and the reference voltage equals .74 volts the w5 variable should read
(.74/4.5)x1023 or 168 (decimals not allowed). The highest number the micro-controller can use
mathematically is 65,335. If the highest number for w5 is 1023, multiplying by 60 will not exceed this limit
(1023x60=61,380). These larger numbers allow for two decimals in the final reading. The program then
calculates the voltage at pin 2 using the number 80 for w6 as follows ... w2=(w5 x 60) / w6 or VR =
(168 x 60) / 80 or 126. Since the reference voltage is 74 (or .74 volts), the variable w6 is increased by 1
and the calculation is repeated. When the 74 number is calculated the variable w6 has been found and

the micro-controller uses the 1 pin to measure voltages.

By comparing the input voltages to a known reference many undesired variables can be eliminated.

59

PROJECT 16 — Battery Tester (Batteries under 4 volts)
Over Voltage Check

RESISTOR

To Computer

e

The Snap Circuit® shown above uses the voltmeter program to check batteries up to 4 volts. An error
message is added for voltages over 4 volts. Hold the battery to be tested in the position shown here;
then press the S2 pushbutton to get a reading. Make sure the bottom of the red snap on the wire
touches the + terminal of the battery, and the other side of the battery is pressed onto the ground snap.
The battery will be loaded at 10 milliamps per volt during the test.

60

Battery Tester Program;

Ed Fle Edit Simuate PICAXE view window Help

2o 2| & | X | % | & | N

Mew |Flowchart] Cpen Save Frint Cptions Syntax | Simulate | Program
wia] o] =]
1 'CrnEC MICRO PROJECTEProjectlb.cad
z 'Converted from Project 15
3
4
5 main:
& wh=380 'starting point for wvariable wb
7 calbrate: readadcll 2,w5s 'read the reference diode
3 wZ=wS*60. wiE 'walculate reference voltage
9 if wZ2= 74 then VM "1f wrong goto next step, otherwise measure input
10 ingc whb 'increase the reference wvariable by 1
11 goto calbrate "try again
12
13 WM readadcl10 1,wl 'read the input voltage
14 wZ=wl*bl-wh 'cwalculate the decimal readout
15 wi=wZ-100 'get the digit before the decimal point
16 wd=wl 100 'get the decimal portion of the voltage
17 it w2 » 400 then ermes 'Add error message for over 4 wvolts
18 serout 0,.WN4800, (#w3,"." #wd," Volts",13,.10] 'display wvoltage
19 nopush: if pind=1 then yespush 'Wait for next press of pushbhutton
20 goto nopush
21
22 yvespush: if pind=0 then VM 'when hutton is released do again
23 goto yespush
24
25 BrMes : serout 0,H4800, ("V to High",13,10) 'Send srror message
26 goto nopush '3kip reading and wait for button
27
28
20

Modify the voltmeter program in project 15 to be as shown above. This program adds an error message

if the battery voltage being checked gets close to or greater than the voltage level of the micro-controller.
If fresh batteries are installed in the Snap Circuit® battery holder, the battery checker circuit can be used
to check the voltage on any battery up to 4.0 volts.

61

Project 17, The Photo Resistor (RP) or Light Dependent Resistor

RP is an example of an analogue sensor that drops from a very high resistance to a low resistance
as light is increased. It is connected between the micro-controller input pin 2 and ground. A 100kQ
resistor from ground to pin 2 allows the voltage on pin 2 to fall when it is dark and rise when there is light
on RP. Dark should be close to 0 and bright should be close to 256. Build the snap circuit shown here.

To Computer

Next page shows program and flowchart.

62

Serial Terminal (4800,n,8,1)
File Edit Refresh Options

Draw the flowchart at the left and use the PICAXE® drop down
menu to convert the flowchart to the basic program shown below.
Download the program into the micro-controller, clear the message
window, and press f8 button to open the terminal window.

St B Fle Edit Simulate PICAXE view Window Help

Flowrchart

R

open Save

= | X A8 & | N\
Print Optons Syntax Simulate | Frogram
[0]| =]

'"BASIC converted from flowchart:
'CrimBC MICRO PREOJECTE~Projectl?.cad
'Converted on (Your Date & Time)

main:

readadc 2,.h0 'read the photoresistor
serout 0,MN4500, (#k0,13,.10) 'send reading to terminal
wait 3 'walt 3 seconds

goto main 'repeat process

—Baud Rate
300 " GO0 1200 2400 " 57600
& 4800 (9600 ¢ 19200 38400 76800

(" Mon-standard (AXEN27 anly)

Change from N2400 to N4800

4800051 By placing the Snap Circuit® in normal room light you

Input Buffer...

should get readings similar to the ones shown here.

176
177

177
3

2 4*

Normal room light.

2
214
254

<‘_7

Hand over the RP sensor (Dark).

254
174
174
172

<4—

Flashlight onto RP sensor (Bright).

Cutput Buffer...

Normal room light.

63

Project 18, Introduction to Data Loggers.

Technically speaking, a data logger is any device that can be used to store data. This includes many
data acquisition devices such as plug-in boards or serial communication systems, which use a computer
as a real time data recording system. However, most instrument manufacturers consider a data logger a
stand alone device that can read various types of electrical signals and store the data in internal memory
for later download to a computer.

The advantage of data loggers is that they can operate independently of a computer, unlike many other
types of data acquisition devices. Data loggers are available in various shapes and sizes. The range
includes simple economical single channel fixed function loggers to more powerful programmable
devices capable of handling hundreds of inputs. The Snap Circuit below is a single channel fixed light
intensity logger. Build this circuit.

rd

e

To Computer

0.

RP
PHO

-
I
©

64

Create the following flowchart:

Ed Fle Edt Fowchart PICAXE View Window Help

o

= > = #
Dla | B 2| & | X | % | & | N\

Mew |Flowchart| Open Save Print Options Syntax | Simulate | Program

v e e | ||| || ||| E

\

Must enter first before making the
gosub command.

for b5 = 1to 60 minutes

| forbd =112 1520 A |

. / LA
serout 0,M2400,(#00,13,", ") Send reading to terrminal
[

- (Change N2400 to N4B00 after converting to basic) - - -

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
. o '
. . o '
. DRI WD '
: wait & Sseconddelay: oo N
. DRI W !
. : o !
. . o !
1
- 1
1
1
1
1
1
1
1
1
1
1
1
1
1

peek b2 b3

serout 0 N2400 (#0313,", ")

In the above flowchart the data is stored in registers 28 to 127 with the “poke” command and retrieved

by using a subroutine called ddump with the “peek” command. The “gosub” command only stops the
time keeping process to retrieve the data and send it to the terminal. Time keeping is then resumed

where it left off by the return command at the end of the ddump subroutine. Use the PICAXE® drop down
menu and convert the flow chart to a program similar to the one shown on the next page. Be sure to add

your own notes and change labels to make your program easy to understand when you revisit this

program at a later date.

65

ﬁ Fle Edt Simulate PICAXE ‘View Window Help Make t_hese equa! to 2 and the wait = 1 for
a reading approximately every 5 seconds. |___

2 (= 7 A & .
N 1 = & = X . & RV # Serial Terminal (4800,n,8,1)
Mew |Flowchart| OCpen Save Print | Options Syntax | Simulate | Progpd

Fie Edit Refresh Opfions -
ABe wle] o] .
1 '"BAZIC converted from flowchart: sua mate
2 B0 MICRD PROJECTS~Projectl8.cad 300 60N 1200 2400 (" 57600
3 'Converted on (Your Date & Time) @ - - ~ -
4 . & 4500 9600 13200 38400 7BE00
5 Changed to 4800 after conversion.
5 main: " Mon-standard (&XE027 anly) 4800,n,8,1
7 let hil= 27
a lahel_1: readads 2,h0 Input Buffer
9 inc bl
10 if b1< 128 then
11 serout 0,M4800°7(#bL0,.",. /) DATL
12 poke bl,k0 79, 0, 0, 0o, 0, 0O, 0, 0, o, o, o, o, o, O, 0, 0o, O, O, O, O,
13 zlse o, o, o, 0o, 0o, 0o, 0o, o, o, o, o, o, 0, o, o, 0o, 0, O, O, O,
14 serout D,N4BDD,(IIME (=t Full. ”) a, o, o, o, 0, 0, @, o, o, o, o, o, o, o, o, o, 0, 0o, o, 0,
15 endif g, 9, 2, 9, o, @, 0, o, o, @9, o, 9, o, O, @, o, O, 4, 4O, 0O,
1A for bt = 1 taol A0 g, o9, o, o, 0, @, o, o, o, 9, o, o, o, 0, @, o, o, o, O, O,
17 for k4 = 1 tal 12 END STORED DATA
158 wait 5
19 if pind=1 then gosub ddump
20 next hd
21 next ki
22 goto label_1
23 ddump :
24 serout 0,M4800, (13,10, "DATA",13,10) BT
25 for hz = 28\tr:: 127
26 peek h2,h3 send
27 serout D,N4802{(#b3,", "
28 next h?
2{‘3/ serout 0,M4800, ("END STORED DATA ",13,10)
/ 0 return

31

Download the above program into the Snap Circuit Project 18 Light Intensity Logger. Press the F8 key to
open the terminal window on your display. Press and hold the S2 switch until data starts dumping into
the terminal window then release switch. The window should display data similar to the picture above
and on the right.

— There will only be one reading since the light sensor data logger was just turned on. The rest of the data
should be zero. It will take approximately one hour before the second reading is taken. Placing this
circuit near a window for a few days will record the light levels for that area every hour for 99 hours. To
make the readings faster, change the program as shown in the red boxes above and repeat the process.
The next page shows program with notes for future reference.

66

Bd Fie Edt Simuate PICAXE View window Help

p —
D& | B 2| 2| X | @ & | N\
MWew |Flowchart| Open Save Frint | Optons Syntax | Simulate | Program
ol o o] =
1 '"BAZIC converted from flowchart:
2 'C:wBC MICRO PROJECTEWProjectld.cad
3 'Converted on (Your Date & Time)
4 'Labels removed by moving sections
5
3]
7 main:
il let bl= 27 'Set storage start register -1 [Z28-1=27)
9 lahel_F: readadoc 2.h0 '"REead the light sensor
10 inc bl '"Goto next storage register
11 if khl< 128 then 'Check to see if memory is full
12 serout 0, M4800, (#k0,.13,.", ") 'Send reading to screen (HN2400 -> W4300)
13 poke b1l,b0 'Store data
14 else '"Tf memory is Full
15 serout 0,M4800.("Memory Full " 'Send 'Memory Full' (HN2400 -> nd4300)
16 endif 'end of memory and store routine
17 for b = 1 to &0 'REepeat loop every minute for one hour
18 for b4 = 1 to 12 '"Repeat 5 second loop 12 times for 1 minute
19 walt 5 'Check every 5 seconds for Data dump input
20 if pind=1 then gosub ddump '"If pin 3 is high do a data dump to screen
21 next b4 'Minute is up after 12 loops for b4
22 next hS '"Hour is up after 60 loops for bS
23 gotao lahel_F 'Goto read and store data
24
25 ddump :
2B sercut 0,WH4800,(10,13,"DATA",13,.10) 'Transmit 'Data" message (HZ2400 -> MN4800)
27 for bZ = 28 to 127 'Start read loop
28 peek hLZ2,b3 'Get stored data
29 serout 0,M4800, (#b3.,13.,", ") 'Send to terminal (M2400 -> H4300)
30 next hi 'Get next stored hyvte
31 serout 0,M45800,(10,13,"END STORED DATA",10) '"Dump Done (2400 -> B4800)
32 return 'continue program where 1t was interrupted
a3

By moving groups around some labels can be removed and program is easier to read. Notes are
important to keep a clear picture of each lines purpose and changes like N2400 changed to N4800 five
times in program.

67

Project 19, Green Power Meter or An Energy Cost Data Logger.

A data logger can be used to store data on how much electricity is being used by a device. For example,
the light sensor is placed by a lamp in a room. When the lamp is turned on the micro-controller records
the time. When the light is turned off, the time elapsed is calculated and stored. The time on is then used
to calculate the kilowatt hours of energy used and the cost based on the current price of electricity. Total
cost per day is then stored for displaying when requested. PICAXE® timing is approximate & can vary by
+1%. Consider the flow chart below.

PICAXE Programming Editor - [C:\Documents and Settings\Administrator\Desktop\Project19.cad]
ﬁ File Edit Flowchart PICAXE View Window Help

D(&[B[2] 8X P
rogram

Mew Open Save Print Options

=4

Syntax

|| <

&

Simulate

Flowchart

BN

label

[

[om et]

@0 return

This section gathers and stores data. This section calculates and displays cost.

Since the flow chart editor will not allow a decimal, write the word “decimal” instead and convert it to a
decimal point after transforming the flow chart to a basic program. The ‘¢’ symbol can be entered by
holding down the <alt> key and entering 0162 on the number pad. Open the program editor and enter
the flowchart as shown above. Be sure to save it before converting to basic. After converting to basic
your program should be similar to the one shown here. Program in Basic for Green Power Meter.

Syntax | Simulate | Program | L-setint
Syntax:
& b L | ECDRIN SETINT OFF
1 "BASIC conwverted from flowchart: SETINT input,mask) o »
2 'C:~5C HICRD PROJECTS-Projectld. cad - input is a variable/constant (0-255) which specifies input condition.
3 'Convertsd .:url1 (?Elilg Date b Time) - mask is variable/constant (0-255) which specifies the mask
Mmaln: =t = ion-
5 1ot blz. 150 «—[amp Wattage Function: ini "
Interrupt on a certain inputs condition.
] pause 1000 e
7 serout 0, N4800,("Wattage = " #b12 13 1p) | Information:) . _
g label &5 faor bE = 1 to 24 The setint command causes a polled interrupt on a certain input pin / flags
9 for bS = 1 to 60 condition.
10 P =etint 8, 8 A polled interrupt is a quicker way of reacting to a particular input combination.
ﬂ Egggzdé g ggg 0 It is the only type of interrupt available in the PICAXE system. The inputs port is
13 if blc 1270 then lahbel 76 checked between execution of each command line in the program, between each
14 label 39: next HEG - note of a tune command, and continuously during any pause command. If the
15 next bR particular inputs condition is true, a ‘gosub’ to the interrupt sub-procedure is
1g wh = wd ~ B0 * h1Z = 9 executed immediately. When the sub-procedure has been carried out, program
%; 1 £ tb]ﬁ ; =]ﬁ §+t121'3n label A7 execution continues from the main program.
= The interrupt inputs condition is any pattern of ‘0’s and “1’s on the input port,
19 poke bl3, word wh . s . P .
20 label &7 wd=0 masked by the byte ‘mask’. Therefore any bits masked by a ‘0 in byte mask will be
21 goto label_ G55 ignored.
3 - Cost per o9
23 label 26: inc wi ost p \ to interrupt on input 3, high only i binary format
gg 2;328450 kilowatt hour to setint %00001000,%00001Q00«(In decimal = 8,8)
26 low 4 nearest penny.
27 goto label_ 39
28 interrupt: highonly Input3 Input2 "Inputl” Input O
29 wh o= 1
i S?ﬁg“;ﬂ&gﬁg”ﬁ;%ﬁ; 13.10) to interrupt on input 1 low only)
37 peek bl. word wi sqtlnt 0/000.000000.,%0.000001_0 (In.deC|maI =0,2)
a3 wl = wl.-100 to interrupt on input 0 high, input 1 high and input 2 low
34 wE = wh+wl setint %¥00000011,%00000111 (In decimal = 3,7)
35 wl = wl-10
36 =zerout 0, H4800, (HFwl " _ _
37 peek bl. word wi 128 6.4.32 168421 or 2+1=3 4"f2+1‘7 .
3g wl=wl~sr1000 add position values that are ones to convert from binary to decimal.
39 wl=wlrs100
40 zerout 0, H4800. (#wl."s ") | “ . ” N .
41 next bl - Change the word “decimal” to a “.” before downloading.
42 wl=uE 10 ~
43 wh = wh .~ 10 S
44 zerout 0. H4800,.(13.10, "Total Co=st = Fwi, " " Fwl, e, 13,1070
45 return

The program will take 24 hours before it records the first day’s cost. To speed up program for testing
purposes, change the second pause from 59940 to 1. After testing replace original value.
Build the Green Power Meter Circuit shown here.

/ 1 3 4 5 6 7
1
A— o o o o o
2
2
B 9 o O (e)
2 SIn GN
. 21
5 U
C o o B ® I @)
o 0
z 2
o R 3 1
S 1 1] ~ I
E o} — © o o ® ©
= 1
2 W N
| Sy | B
-1 °
= /| &
0 H) 0 o ©@

)

ESISTOR

PHO

/

To Computer

<Flashes once each minute when it records lamp as on. No Flash if lamp off.

70

To shield the photo resistor RP from daylight and other light sources you should take a
tube from a roll of paper towels and cover one end with a piece of paper as shown here.””|
Punch a pencil size hole in the paper and cut the other end of the tube so it fits over the
photo resistor RP in the circuit above. Aim the hole in the tube at the lamp being

measured so only light from that lamp hits the photo resistor.

()
To test the Green Power Meter (GPM) change the second pause in the program from \F/I/

® Serial Terminal (4800,n,8,1)
File Edit Refresh Options

—Baud Rate

= Mon-standard [8<E027 anly]

300 ¢ BOD ¢ 1200
& 4800 ¢ 9600 ¢ 19200

2400

™ 38400

" &FEO0
™ 7EE00

4800,n.58.1

DaTa

Cutput Buffer...

21l.8¢ Zl.g= 8¢ Zl.ge
21l.8¢ Zl.g8¢ 2Z1l.g8¢ Z1l.&:¢
2l.o¢ El.ee Zl.o¢ Zl.@¢
21l.8¢ Zl.g8¢ 2Z1l.g8¢ Z1l.&:¢
0.0¢ 0.0« 0.0: 0O.0s 0O.0¢
0.0¢ 0.0« 0.0¢ 0O.0: 0.0¢
Total Cost = gic.4de

%]

Irput Buffer... /
Wattage = 100

1.8¢ b 21l .8¢ 21l . &8¢
1.8¢ b 21l .8¢ 21l . &8¢
l.ge Zl.&e Zl.g¢ Z2l.gs
1.6¢ql.08 0.0¢ 0.0¢
0.0e 0.0 0.0 0.0
O.0¢ O0.0¢ 0O.0¢ 0O.0¢
Send

71

59940 to 1 and download into the
Snap Circuit® on the previous
page. After removing successful
download window, quickly open the
terminal by pressing <F8> key.
Restart the GPM and your terminal
window should display the ‘Wattage

The red LED should be flashing
very fast if enough light is present
to trigger the record part of the
program. Place your hand over the
photo resistor and the flashing
should stop. Press the S2
pushbutton to see recorded data. It
will take more than one minute to
emulate one day of recording with
light on.

\29 Days recorded, out of 50
possible before memory is full.
For 29 Days Recorded the lamp at
9 cents per kilowatt hour, would

have cost the user $6.26.

Be sure to change the wattage setting to the value of the lamp you will test and the price per kilowatt
hour to the nearest penny rate on your electric bill. Replace original pause settings and download the
program. Remove computer leads and install 10K resistor. Place it under the light to be tested. Make
sure the LED flashes once every minute the lamp is on, and does not flash when lamp is off. Wait a
month to get a good reading on the cost of normal use of the lamp. Although the GPM can only measure
up to 255 watts directly, any device tied to a light source can be calculated. For example, a 1200 watt
heater with a light would cost 12 times the number calculated above or 12 x $6.26 = $75.12 for 29 days.

PROJECT 20, Audio Amplifier and the Microphone (X1)

Build the Snap Circuit shown below. For those familiar with electronic circuits and
schematics a schematic drawing of this circuit is also included.

TO MICROPHONE INPUT ON COMPUTER

/ 1 2 3 4 10
1
A (] fe) 4 o (o) 2) —_—
1= o _
0 2
g +
c4 190pf B - 5 1 —
| 2 S o
l\:O X1 C g0 2 zo . O O O ﬁE—J
7 1 o 2
1554 %
Schematic Drawing D oS =
c g
S , (=] 1
E &) (o) O A ©
MICROPHONE CABLE 5 = 2 2
21 |2
F ® O
TO COMPUTER < 2
Microphone Input o o o o o o o L

72

Make sure the computer speakers are turned on and the volume or loudness control is not at zero.

Also make sure the microphone input is on by checking the controls as shown below.

Go to control panel and double click the “Sounds and Audio Devices” icon. In the panel that opens, click
the “Advanced” bar under the device volume section to open the window below. {May appear different}
Click on the “options” menu and check the “Advanced” section to open these.7\\

Mixer device: | g oy ~| -
Ackiist TnE foF ‘-.’lnlume Cantrol Wave SW Syrth CD Audio Microphaone PC Speaker
@ Playback Balance: Balance: Balance: Balance: Balance: Balance:
» —J < > — 4B —+ ¢
(") Recording AL T b AR
Volume: Vaolume: Yolume:
() Other) | i |
Show the following velume controls: Tl ‘
Walume Control 3 : - - - :
Wave [Mute all] Mute [Mute
SW Synth ¥
CD Audi Advanced

Microphone

PC Speaker | Conexant AMC Audio

[oK H Cancel]

Click on “options” again, and then “properties” to open this window.
Make sure the Microphone & Volume Control boxes are checked. Click OK.

For best sensitivity, click on the advanced button under the microphone column and make sure the
“Microphone Boost” box is checked in the window that opens. Not all versions of windows will have
these “Advanced” buttons and windows may appear different. Turn S1 switch to on and you should be
able to hear amplified sounds from the microphone. Test by blowing on the microphone. If feedback
occurs, reduce the speaker volume or the microphone input setting. Keep this circuit for the next project.

73

SECTION 4: AUDACITY® & SOUND

P
: . s

Project 21, Audacity® __—a¥Gacity-win-1.2.6.exe

Run the installer program “audacity®-win-1.2.6.exe” from the Elenco® dist.

Follow the instructions to install the program. After installation run the program and a window similar to

the one below should open;

2 Audacity I;”EHX[
File Edit View Project Generate Effect Analyze Help

=

I P 2..g....% Pi..g. ... "% [Mosheoe
:[R| [/ t

"z 2) J‘) e pmrs [a]mlm] oo » 228

0L0 1.0 2.0 .0 .0 9.0 10. X

4.0 5.0 6 .0

»

4| »

Project rate: 44100 | |Cursor: 0:00.000000 minsec [Snap-To 0f)

74

An Audacity® recording of the words “yes” and “no”.

= Audacity

File Edit View Project Generate Effect Analyze Help

Al M [wy o [Microphore =]
J >)e)m) J f) = = A

010 0.20 030 040 050 0860/ 070 080 0580 100 110 120 130 140 1.50 0 1.70 1.80 190 200 210 220 230

4

Projectrate: 44100 | |Cursor: 0:00.006955 min:sec [Snap-To Off]

In speech recognition programs, computers analyze the digital data from words and use the common

points to determine the word being spoken. The next project will use the sound of clapping to control an
LED.

75

Project 22, Investigating Sound of Clapping.
Use previous setup to record the sound of two claps. Try recording two claps with different delays

between claps. The picture below shows different clap groups highlighted by different colors.
File Edit View Project Generate Effect Analyze Help

m= "t o Fio [wm
lolelx| D 2))W) B Y) ez pewe alm@wn] olc] »
-D.5 0 0.5 1.0 1.5 .0 3.5 4.0 5

o7
08
dN_/

2.0

25

\ I \ |
[thnpme remains for recording 1vursm3nhmm \\

.4 seconds

.2 seconds

Ve

\ NS

.6 seconds

.8 seconds 1.1 seconds

Peaks reach both +1 and -1 levels, then decay to a level less than .1 within .2 seconds.

76

A single clap from the previous page is shown here.

File Edit View Project Generate Effect Analyze Help
= g “i [N i P g " [vcophone ~

%H?vvyyyyi """""" GEOIERERERER

~0f020 0.000 0.
| X[Audio Track ¥ | 1.0
Mono, 44100Hz | o.g
16-bit
038
0'-7
| 06
0.5
0.4
03:
0.2

0.0
02
03
04
0.5
-06
07
08

-0.9
1.0

.2 seconds or 200 myilliseconds

Amplitude window for less than 10% of a positive / or a negative peak.
Expanding the area inside the yellow box will shgw the first few milliseconds of clap. This area could be
used to trigger an interrupt and start the process/ to analyze the sound. This area is expanded by;

1. Highlight area using this button.

2. Eliminate rest of curve using this button.

3. Expand using this button.

77

Expanded start of a clap. Data points highlighted by clicking “pencil” button.
00000 0.00020 0.00040 0.00060 0.00080 0.00100 0.00120 0.00140 0.00160 0.00180 0.00200 0.00220 0.00240 0.00260 0.00280 0.00300

{[Z el

If -1 =0, +1 = 255, and 0.0 = 127 then the dots below the —0.3 red line and the dots above the 0.3 red
line show digital data points for loud sharp sounds that are less than 88 or greater than 166. This data
can be used to detect the start of a clap sound.

After .25 seconds or 250 milliseconds all the data should be between the two center purple lines as
——shown by the dots at the beginning of the curve. This data can be used to detect the end of a clap
sound. Use the Audacity® program and the circuit from project 20 to verify these facts.

78

Project 23, The Clap-Data Program
Consider the flow chart shown here as one method of recording and displaying data from the sound of

two claps within a 2.5 second window.

[if Fie Edit Flowchart PICAXE View Window Help - T x

D Bl 2| & X| ™| &N\

MNew Open Save Print Options Syntax Simulate | Program

I | # |1uhel EE|<>

ks
i
Flovechart

SRLY @l|@l’|@]

[start = D : interrupt BT IR I

for b0 =80 to 103

......................

- let wd =0 P I .)
. B ! | etbTI=sEpz |

X ‘ let bS=b4+ &

o ‘ et bS=hd+ 5

peektOb1 | 000 0T

pause 10

for b=b4 to bS ‘ D | ferbd =

E*155%555555555555 o

- pause10000 ||| T T

[| | readade 2,012 | D00 D D s S An D

""" | letb10=p10+b13 | |

o nasoel T Tl

o / !
| serout O N2400 (#EZC, Y L
L Ee———

forbO=1to10 | 0 0 1| 0]

allacaccallooacs let b10=b10) 2

- readade 2013 | 000 | D000 DI ‘ let bd=bd+ & e B
fo||zeeee]lcececcac]s|: nest b0 sosasacosoas l

It bd=bd+ &

Converting the above flowchart to a basic program and adding notes can produce the Basic program
shown on the next page.

79

[l Fil= Edit Simulate PICAXE vView Window Help

: 1 = > : & ABC:
| B # e | 3 ¥ & | X

Mew Flowechart Cpen Save Print Options Syntax Simulate | Program
s |2 w|ew|o =] |
1 'BASIC converted from flowchart:
2 ‘2o w5C MICRD PROJECTS-FPROJECTZ23Z . CAD
3 'Conwverted on DATE =t TIHME
4 maimn let wi=0 'Clear previous average for no noi=e
5 high 1 ‘Turn on Gresn LED
= pau=sse 10000 'Let =v=tem ==ttle
7 readads 2. b12 'Read collector woltages
a8 for bO = 1 to 10 'Start measzure of guist walues
9 readades 2.b132 'Zet First reading
10 1f bl3 »>= blZ then 'Higher or segual to collector woltage?
11 bl1l1=bl3-b12 'Tf we= =ubtract to get differsence
12 =el=e= 'Tf not
13 bl1l1=bl1l2-hb13 ‘Subtract to gt differsnce
14 endif 'End difference routine
15 if bll > 3 then main 'Difference > 3 too noisy. start owver
16 If w8 <> 0 then ‘'HWot the first reading? ————————————— —————
17 w8 = w8 + blZ 'Tf we=s then add to average
18 wd = wd.r 2 'Calculate new averages Change bl to wi
19 =el=e= 'Ye= thi= 1= first reading
20 w8 = hbl3 'S=et fir=s=t reading a= the average |
21 endif ‘End average routinhe ——mM—Mm————————— — — — — — — —
22 next b0 "Gt next reading
23 =erout 0. H4200.("z=ero level = "_ #bhle.13.10) '"Frint no noi=e lewvel 2400—:>4800
24 low 1 'Turn off green light
25
26 label_79: l=t Lbd= 80 'Start addres=s for data =torage
27 l=et be= 0 'Counter bhbetween claps=
28 label_22: ==tint 00010000 ,>00010000 '‘Interupt on High at AC coupled input 4 8, 8——>x&
29 if b4ix 95 then labesl_79 'Start again after 2Z2nd olap
a0 pausse 10 'FPau=sse 20 milliseconds
31 inc be 'then add one to bhb
32 1f be>r 254 then label_ 79 '2 .5 zZecond=s are up
33 goto label 22 '‘'otherwvi=s=e keep looking for 2nd coclap
34 interrupt :
35
36 l=t bi=hbdi+ & 'Set window to B data points
37 for B0 = b4 to bE 's=tart reading data
38 readadc 2.b13 'read data pin 2 and place it in bl3 wariable
39 polke bi,.b1l3 '=tore reading in storagse arsa
40 pausse 2 ‘'pau=se for 2 n=
41 next b 'continue reading group of & data points
42 pau== 500 '‘wait for |25 =scond=s to get guist data
43 let bd=hbd+ & ‘==t =torage area for guiet data
4.4 l=t bi=hbdi+ & ‘==t window for 6 data points=
45 for B0 = b4 to bE 'start reading guist data
46 readadc 2.b13 'read guiest data on pin 2
47 polke bi,.b1l3 '=tore 1in storage area for guist data
48 pau=sse 2 ‘'pau=se for Z2 m=
49 next b 'continue reading all & points
50 1if bd> 91 then label_L582 'Tf 2nd clap i= recorded go to dump data
51 let bd=hbd+ & 'Tf no 2nd clap ==t data storage
52 l=et be= 0 'Re=et counter for maximum of 5 =e=c.
53 label_EF: return
54
=1 label_5&58: ftor bO = 20 +to 1032 'S=t data read for all data stored
=1 =] pe=sl bi.bl 'Z=t data
57 1if bl > ble then 'If reading i= larger than guiset blZ-—:>blo
= =] b2=bl—-bls 'Subtract guiet from reading bhBl2——>bla
59 =l=e= 'Tf reading les= than or sgual to guieset
&0 b2=ble—-bl1 'Subtarct reading from guiet number bBl3——:>ble
61 endif 'end difference routine
B2 =z=erout 0. H48300, (FL2. KB ". " 'Send to terminal {Baude rate changed & i1n 377}
B3 next b 'Eepeat for all data
(=% ==erout O, H4800 ., "snd" ., 13,107 'Send end of data and start new lines
&5 goto label_ &F 'EFeturn to main program.

80

Build the Snap Circuit® shown on the next two pages and download the above program into the micro-
processor.

Clap data taking circuit levels 1 & 2.

1 2 3 4
2
A{ o 0 0 0
O
11=] ¢ 2
n
LLJ
B o I 0
(®
c @ ~J
= 0
LLI
C{flo 0 o
@
4
O O O
T O
“J 4 2 2 2 1
a1 1
[®) o © O O o V
02
2 G 1
é » 2
: - a 5 5 = To Computer
1 @
2 2 2
(@]

81

Finish the Snap Circuit® shown below for the clap data taking circuit levels 3 & 4.

A — 1\
B E
C/ JJ

To Computer

Tm

F
\\G M©ICROPHON' X1 ©
3

After downloading the program, clear the download window and open the Terminal window under the
PICAXE® menu in the program editor or press F8. A quiet level will be calculated and displayed when
the green LED goes off. Every two claps should produce a stream of data that is followed by the word
“end”. Second clap should be .5 to 2.5 seconds after the first clap for best results. Data will vary from

circuit to circuit, but certain characteristics will remain the same. It is these characteristics that will be
used to control our final output.

82

Project 24, Analyzing Clap Data

Data shown in terminal window after four

Start of first clap
11

11

17

2

3

2

46/ 6 = 7

Serial Terminal (4800,n,8,1)
File Edit Refresh Options

pairs of claps should be similar to this;

—Baud Rate

{~ Mon-standard [&<E027 anly)

300 & OO T 1200 & 2400
f+ 4800 ¢ 9800 &7 159200 ¢ 38400 ¢ FEEOO

45800.n.5.1

[nput Buffer...

zero level

11, 11, 17, 2, 3, 2, |o,

Iz, 1, 3, 1, 3, |1, u,

Start of 2nd clap
16

13

1

3

1

3

37/6 =6

Adding the levels for the
start of the first clap yields
7 times the sum of the data
for the end of that clap. It is
this ratio we will use to
recognize the clapping
sound.

Remainders are dropped,

1z, 18, & \ \
1a, 14, &, 10, 4, 0, 1,
13, 4, &,
4, 13, 11, =z,
12, 9, 9, \
13, 12, 2, &, 1, 1, 1,

Cutput Buffer...

Send |

End of first clap
0

1

2

1

1

1

6/6=1

End of 2nd clap

A ONNOR

/6=1

Adding the levels for the
start of the second clap
yields 6 times the sum of
the data for the end of
that clap.

Remainders are dropped,
only whole numbers

FRTPES |

Clap Pair 1 ratios: 7 for first & 6 for second

Clap Pair 2 ratios: 7 for first & 12 for second {If average is less than 1, 1 is used}

Clap Pair 3 ratios: 8 for first & 5 for second
Clap Pair 4 ratios: 5 for first & 5 for second

Observing ratios lets us pick 5 as the minimum ratio for a clap sound.

83

Project 25, The Clap it ON, Clap it OFF Circuit

In the following flow chart the ratio of 5 is used to determine a clap sound and if two claps occur within a

2.5 second period the green LED changes state. Since there is no need to store the data and send it to

the computer, the program can be a stand alone circuit that responds to a two clap command.

ﬁ File Edit Fowchart PICAXE Yiew Window Help g x
? = > . v
hl&a| B2 | 2| 8| X | » A
Mew |Flowchart| Open Save Print | Options Syntax | Simulate | Program
A K| a|e]|a ‘ i * ‘ B;
. start oL D .“TZZZZZ Zﬁﬁﬁr‘......
P B e ‘ pause 230 ‘ ‘IEID11=W4IE‘..
s - b16 = zero level
let wa =0 N . o ... T) M o interrupt
let b11=b13-b12
. . AT [R L letwd =0
. . T P .. L. . . pause 10 . .
Zi high 1 ;ZZZZZ Z R I Rt S | forbo=1to6 I I
. . T, . let b= 1 X X . forb0=1t06
pause-10000 o T S| readade 2013 | 0 00 0T
. . e . e . let bé=0 . . L
readade 2012 | 000 | Z. P Lo |
. . Lol . . setint 8, 8§
forbO="1to10| . .| .]. = L I let h2=h3-013 | . .
o . . let h2=b13-b5
& Letwd=wd/2 let bd=hd+ 1
. . e F . . let b2=b13-b&
readade 2013 | 000 0| . T Y S . L .
PR P C| letwd =wd + b2 0 X
. ol next b0 . ’ . let b=
l X toggle 1 X X letwd =wd + b2 v
. L . [retumn]
. . L nes bl
L let h10-= wd / & :
4 | » [£]

The beginning of the above flow chart the 10-second delay is necessary in order to allow all the circuit
transients to settle and come to their operating levels. A green light indicates this process is running.

84

[Ed Fie Edit Simuate PICAXE view Window Help

- —
[& B I 4 = | X ARG = AN
[Flowchart| Cpen Save Frint Optons Syntax Simulate | Program

(B we] [0 -] =]

1 '"BASIC converted from flowchart:

2 '2:~EC MICRO PROJECTE~Project 25.cad

3 'Converted on (Your Date & Time)

4 main: let wd =0 'Clear previous average [or no noise

=1 high 1 'Turn on Green LED

=} pause 10000 'Let system settle]

r label_1B: readades 2,b12 'Take first reading

g for RO = 1 to 10 'Start measure of guiset wvalus

= readadoc 2.b13 'Get Next reading

10 if B13 »>= bl2 then 'Higher or egual to first reading?

11 let bll=hl3-kb12 'If wes subtract to get difference

12 else 'If not

13 let bll=hlZ-h1l3 'Reverse Subtract to get differsnce

14 endif 'End difference routine

15 if kl1ll > 3 then main 'Difference > 3 too noisy,. start over

16 if w8 <> 0 then 'HMot the first reading? -Changs b1l0 to wi

17 let w8 = wd + hb1l3 'If wes then add to average

15 let w8 = wi ~ 2 'Calculate new average

19 else 'Yes this is first reading

20 let wd = k13 'Set first reading as the averags

21 endif 'End awverage routine

22 nexzt b0 'Get next reading

23 low 1 'Turn off green LED

24 'HOTE: w8 = USES kle & k17 FOR VALUE, hle CONTAINZS THE AVERAGE WE MNEED

25 lahel_88: let hd4= 1 'Btart clap counter

26 let be= 0O 'Feset between clap timer

27 label_96: setint #¥00010000, X0ooloo0oo 'Set interupt to pin 4

28 if k4> 2 then 'If 2 claps detected

29 toggle 1 'Toggle LED

30 gotao label_ 88 'Repeat process

31 endif 'End of clap counter routine

32 pause 10 'Pause for .01 seconds

33 inc b6 'Add 1 to counter between claps

34 if hEr 254 then lahel__88 'ITf 2.5 seconds elapsed start over

35 goto label 96 'Otherwise continue looking for claps

38

37 interrupt: 'CLAF CHECEER

38 for kil=1 to 6 'Set up to usse b readings

39 readadoc 2.b13 'Get first reading

40 if blEer*b13 then 'Eoutine to get level differences from guiet

41 let bhZ=ble-k1l3

42 elsea

43 let hZ2=kl3-kla

44 endif

45 let wd = wd + b2 'Total of differences from guiet

46 next kO 'Get all 6 readings

47 let 10 = wd ~ 6 'Get average of readings

45 pause 250 'pause for .25 seconds

49 let wd = 0 'reset difference sum

50 for bi=1 to & 'lock for 6 guist readings

51 readadc 2,b13

52 if blE>k13 then

53 let bZ=blbe-k1l3

54 else

55 let hZ2=kl3-kla

56 endif

57 let wd = wd + 2

58 next k0O

59 let b1l = wd ~ 6 'Get average of guiet readings

&0 If khl1ll = 0 then 'Tf average is 0 make it 1

61 let b11 = 1

62 endif

63 let blZ=hl0~-hi11 'Get ratio for clap to guiet

G4 if kB12< 5 then 'Is ratio more than 57

65 let b4 = 1 'HMa then set clap counter to 1

(=153 else

67 let bd = hbd + 1 'ves, then add 1 to clap count

(=3=] endif

69 let ko= 0 'reset counter betwesen oclaps

70 return 'go hack and check for nexzt clap

=4

85

When the light goes
out the circuit is
reading to wuse. A
proper two-clap sound
should toggle the
green LED on or off.
After conversion to
Basic and cleanup the
program should look
like the one shown
here.

Notes added will help
when viewed at a later
date.

All flow charts and
basic programs are on
disc provided.

Elenco® Electronics Inc.
150 Carpenter Ave
Wheeling, IL 60090

(847) 541-3800
www.elenco.com

Copyright © 2012 by Elenco® Electronics Inc. All rights reserved. No part of this book shall be reproduced without written permission. PD031811

86

